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Abstract--Non-affine translation of suspended particles in a flowing suspension causes micro-convection 
of the fluidL in the vicinity of the particle which affects the local transport mechanisms in the suspension. 
To investi~:ate the importance of micro-convection on heat transport, a unit cell approach is adopted. A 
parametric study investigates the influence of particle fall velocity in a quiescent fluid and particle volume 
fraction orL micro-convection in a sedimenting suspension. The thermal flux across the unit cell is shown 
to be a function of modified Pfclet number that includes the influence of volume fraction for the range of 
volume fractions (0 < e < 0.3) and for Pe ~ O(1). This is used to investigate the influence of hindered 

settling on transport processes such as heat transfer occurring in a sedimenting suspension. 

I .  INTRODUCTION 

It is well-known that heat transfer rates in two-phase 
systems are generally higher than in single phase fluids 
under similar flow conditions. This enhancement may 
be attributed to many physical processes that occur in 
a two-phase flow, namely micro-convection around 
solid inclusions, phase changes and associated effects 
due to latent heat, additional turbulence because of 
the presence of inclusions, non-affine motion of sus- 
pended particles, thermal properties of suspended par- 
ticles and, finally, velocity gradients near flow bound- 
aries can have a significant affect on heat transfer rates 
and the mechanisms of heat transfer [1, 2]. A model to 
predict effective thermal conductivity of suspensions 
where there is relative motion between the suspended 
particles and the fluid was developed for a dilute sus- 
pension undergoing simple shear at low Pfclet number 
[31. 

Heat transfer occurring in fluid/solid mixtures is 
important from the viewpoint of industrial appli- 
cations which range from processing of slurries and 
gaseous suspensions to manufacturing of polymer 
composite materials. This wide spectrum also includes 
very critical applications such as cooling of nuclear 
reactors using gas-ceramic mixtures, processing of 
food and spray drying of milk. In almost all chemical 
processing, one requires precise temperature control, 
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consequently, one requires detailed understanding of 
heat transfer mechanisms. 

Whenever a suspended phase moves non-affinely 
during a flow process, mechanical dispersion gives 
rise to a heat transfer mechanism which is distinctly 
different from either pure conduction or macroscopic 
convection. In almost all the previous theoretical or 
experimental studies of enhancement in heat transfer 
in flowing suspensions, the predicted or observed 
enhancement is attributed to the bulk shearing of the 
suspension near the walls of the tube. This bulk shear 
induces individual particle rotation and micro-con- 
vection [4]. 

A very similar effect on the heat transfer mechanism 
is expected in suspensions which are stationary but in 
which particles are continuously settling because of 
the presence of body forces. These motions, which are 
purely translatory in nature, are also present in flow- 
ing suspensions but their effect on the heat transfer 
mechanisms has not been studied in the literature. The 
main purpose of the present work is to study the effect 
of pure translation of particles on the microscopic 
heat transfer in a monodisperse suspension. Non- 
affine translation of suspended particles in a flowing 
suspension (i.e. relative motion between the particles 
and the fluid) will result in particle migration and will 
influence the momentum and heat transport mech- 
anisms. 

For example, in a suspension of spheres sedi- 
menting in an unbounded, quiescent Newtonian fluid, 
as the particle volume fraction (~) increases, hydro- 
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NOMENCLATURE 

a particle radius 
A, B, C and D constants obtained in the 

evaluation of flow fields 
b radius of spherical envelope 
Br  Brinkman number (it U 2/kll T2 - Tll) 
Cp specific heat at constant pressure 
( i , j ,  k )  node numbering in x, y and z 

coordinate directions respectively 
kl, k2 fluid and solid thermal conductivities 

respectively 
L characteristic length 
p fluid pressure 
Pe P6clet number based on fluid 

diffusivity (UL/~)  
/~e' average modified P6clet number 
Q heat flux 
Q* non-dimensionalized heat flux 
tl and t2 time scales 
T temperature 
T~ temperature at the bottom face of the 

unit cell 
T2 temperature at the top face of the unit 

cell 
7 ~ non-dimensionalized temperature 

( T -  TI/7"2 - T1) 
u fluid velocity vector 

u x-direction velocity component 
U particle speed in the z-coordinate 

direction 
/.7 average particle speed in the z- 

coordinate direction 
v y-direction velocity component 
w z-direction velocity component 
x, y and z Cartesian coordinate directions 
vr radial velocity component in spherical 

coordinates 
vo tangential velocity component in 

spherical coordinates. 

Greek symbols 
thermal diffusivity 

~t thermal diffusivity of liquid 
~2 thermal diffusivity of solid particle 
e solid volume fraction 
0 spherical coordinate 
2 geometric parameter (a/b) 

p dynamic viscosity 
p density 
a standard deviation 
ZrO shear stress 
q9 spherical coordinate 
~O(r, 0) stream function. 

dynamic interactions between particles increase result- 
ing in a distribution of diminished particle fall vel- 
ocities which exhibit non-zero  variance. The results of 
our experiments performed on a dilute [e ~ O(10-5), 
inter-particle distance ~O(40xpar t i c le  diameter)], 
monodisperse homogeneous, non-Brownian sus- 
pension of glass spheres 22/tin in size in water using 
laser doppler anemometery (LDA) show that the par- 
ticle fall velocity exhibits a standard deviation of more 
than 30% of the mean value [5]. The effect of dis- 
tributed fall velocities on the enhanced heat transfer 
occurring in a sedimenting suspension has not been 
investigated so far. This research is focused on study- 
ing these issues using a reasonable physical model 
which can give insight into the complex process of heat 
transfer as it occurs in a monodisperse suspension. 

From the available literature it is apparent that 
there is no reported experimental work which specifi- 
cally focuses on enhanced heat transfer in suspensions 
caused by the effect of relative motion between the 
suspended particles and the suspending fluid. 

In this paper we have introduced a simplified model 
of the complex process of heat transport in a mon- 
odisperse suspension in which suspended particles 
exhibit non-affine motion. To begin with, the sus- 
pension as a whole is assumed to be stationary. This 
simplification with certain assumptions leads to a unit 
cell model which paves the way for a tractable numeri- 

cal scheme which can account for the convective as 
well as the diffusive heat transport mechanisms at 
a microscopic scale of the suspended particle. The 
steady-state solution of the energy equation obtained 
in this manner leads to the steady-state temperature 
distribution and thermal flux across the unit cell as a 
function of suspension parameters such as solid vol- 
ume fraction and particle P6clet number. The thermal 
flux across the unit cell is shown to be a function of 
modified P6clet number that includes the influence of 
volume fraction for the range of volume fractions 
(0 < e < 0.3) and for Pe  ~ O(1). The correlation 
between the modified P6clet number and the thermal 
flux is shown to be a simple polynomial which is then 
used to investigate the influence of distributed particle 
fall velocities on the estimated heat transfer. 

2. THEORY 

To illustrate the role of the relative motion between 
the fluid and the solid inclusion in enhancement of the 
heat transfer, and to establish that there will be a 
fundamental change in the mechanism of heat trans- 
port, consider the following example. Suppose a par- 
ticle of  diameter 2a is moving in a quiescent fluid 
(subscript 1) which has thermal diffusivity ~1. Time t, 
required for heat to diffuse a distance of 2a in this 
fluid is given as 



Micro-convection in a mono-disperse suspension 2947 

O((2a)V~ 
t 1 ~ - -  (1) 

k (~1 J '  

If  the particle has a speed u, time t2, taken by particle 
to translate a distance of 2a, is of the order of, 

If  it is further assumed that the fluid and the particle 
have identical the, final diffusivities, then on a length 
scale of the particle diameter, augmentation in heat 
transfer will be of significance provided, t t/t2 >/1. The 
ratio of the time values is the P6clet number, based on 
the particle diameter, its relative velocity with respect 
to the suspending fluid and the fluid diffusivity. Thus, 
it is this non-dimensional quantity that governs or 
dictates the dominance of  convective heat transfer 
due to particle motion over purely conductive heat 
transfer which occurs in quiescent fluid. Whenever 
Pe >i 1, it is necessary to account for convective effects 
in a suspension. 

Dimensional analysis reveals that heat transfer 
across such suspensions is governed by particle Prclet 
number (Pc = UL/al), the ratio of thermal diffus- 
ivities of the fluid and the particle and the ratio of 
thermal conductivities of the two phases and particle 
volume fraction. Here, L is a characteristic length 
scale which is related to particle size through volume 
fraction of the suspension. 

Normally, if the entire suspension is deformed, it is 
difficult to characterize the magnitude of the relative 
motion between tlhe suspended particles and the sus- 
pending fluid. This characterization can be done for a 
quiescent, unbounded suspension of hard spheres in a 
Newtonian fluid such as water. Here the term 
unbounded is used in the sense that the ratio of con- 
tainer dimension to particle diameter is sufficiently 
large (>  1000), so one can justifiably neglect wall 
effects. These hard spheres may then be allowed to 
settle in the medium creating non-affine motion 
because of body fi)rces such as the gravitational field. 
By selecting the quiescent medium, convective flux 
due to bulk motion of the fluid under consideration 
is eliminated and allows one to focus attention on 
enhanced heat tr,'msfer occurring solely because of 
particle induced rrdcro-convective heat transfer. 

2.1. Governing eqnations 
In order to construct a tractable mathematical 

model for the plediction of heat transfer in such 
monodisperse suspensions, a number of simplifications 
are made. If the flow is steady and sufficiently slow 
that the inertial and turbulent effects are ignored, only 
the pressure and viscous terms need be retained in 
the momentum equations: the incompressible contin- 
uity equation remains the same. Thus the governing 
equations for the ,,~olution of  Stokes problem are [6] 

V ' n  = 0 (3) 

0 = - V p + p V E u  (4) 

where u is the velocity of the fluid, p is the pressure 
and # is the fluid viscosity. 

Furthermore, it is assumed that a steady-state tem- 
perature field exists on the macroscopic scale through- 
out the domain under consideration and thus one 
needs to solve after neglecting viscous dissipation, 
only the steady-state energy equation, which is 

Peu" V T - V 2 T  = 0. (5) 

In equation (5), u is the fluid or particle velocity, 
Pe is the Prclet number and T is the temperature. 
Here the P6clet number is based on particle speed 
U, characteristic length scale L based on the average 
particle separation and thermal diffusivity ct, which 
can be expressed as 

UL kt k2 
Pe = - -  where a - - o r  (6) 

(pG), (pG): 
depending on whether the point under consideration 
belongs to the fluid (subscript 1) or the solid portion 
(subscript 2) of the suspension. At  the interface of the 
two phases, the temperature and the energy flux are 
assumed to be continuous. For this analysis, we 
assumed thermal conductivities, and heat capacities 
of the fluid and the particle to be identical. 

2.2. Model simplification 
For the sake of simplicity and to provide a viable 

model, this dispersion is assumed to be homogeneous 
and consisting of regular periodic arrays of particle 
centers translating in a fixed coordinate direction with 
respect to the bulk suspension which is stationary. 
This condition needs to be met in a region of space at 
length scales much larger than the particle diameter, 
which may be called a 'sub-domain' as shown in Fig. 
1. This enables one to study heat transfer across a 
single particle located in a cubic unit cell in a given 
sub-domain characterized by : a particle volume frac- 
tion ; a local particle Prclet number in which the length 
scale is the diameter of the unit sphere ; and a specified 
temperature or flux boundary condition. Within this 
unit cell, because of relative motion between the par- 
ticle and the fluid, the induced disturbance in the fluid 
velocity can be modeled in a variety of ways and can 
be coupled with the energy equation to investigate the 
heat transfer across this cell. These results would be 
valid for the sub-domain under consideration. 

As an assemblage of particles moves through an 
unbounded fluid, it creates a velocity field throughout 
the fluid. This velocity field consists of fluid which is 
being dragged by the moving particles and the fluid 
moving in the opposite direction, as it is displaced by 
the particle. As a result of these motions, it is expected 
that the rate of heat transfer in a moving dispersion 
may differ considerably from that in a stationary dis- 
persion. The complexities involved have prevented 
analytical treatment in the literature. 

A closely related process to this problem is sedi- 
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Fig. 1. Schematic of unit cell model. 
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mentation, where particles fall under the action of 
gravity through a fluid in which they are suspended. 
This occurs in many natural processes as well as in 
important separation processes used in the chemical 
industry. It was also pointed out earlier that these fall 
velocities show a large standard deviation about the 
mean value due to the hydrodynamic interactions. 

To investigate the dependence of the rate of heat 
transfer on this standard deviation in a settling dis- 
persion, it is essential to simplify the complex bound- 
ary value problem involving many particles. In this 
numerical work, to make the problem tractable, the 
unit cell method is used. The unit cell method relies 
on the concept that an assemblage may be divided 
into a number of identical cells, one particle occupying 
each cell. This allows one to simplify the boundary 
value problem by considering the boundary of a single 
particle and its bounding volume. Although this tech- 
nique is restricted to suspensions in which particles 
are moving in regular periodic arrays, its results can 
be applicable to random arrays in some stochastic 
sense [7]. 

3. UNIT CELL APPROACH 

To predict numerically the effective heat flux across 
a horizontal plane in an unbounded dispersion of 
rigid spheres and its dependence on average particle 
velocity relative to the medium, the un i t  cell technique 
is used. This technique is based on the concept that 
an assemblage of spherical particles can be divided 
into a number of identical cubic or spherical cells 
with one particle occupying each cell. Naturally, this 

technique is limited only to regular periodic arrays 
of moving particles with identical size and material 
properties. The use of this technique and the assump- 
tion about the configuration of the particles as they 
fall, allows one to reduce the complex boundary value 
problem involving numerous interacting particles to a 
single unit cell containing a single particle and suitable 
boundary conditions applied on the unit cell and par- 
ticle surfaces to account for and closely model real 
dispersions. 

To simulate heat transfer across a plane in such a 
dispersion which is unbounded, any proposed unit cell 
model must be able to account for : 

(a) conductive heat flux due to an imposed tem- 
perature gradient which is same as the macroscopic 
temperature gradient, 

(b) convective heat flux due to the motion of the 
particle and the fluid which is dragged along with it, 
and 

(c) convective heat flux due to the motion of fluid 
in the opposite direction to the particle motion which 
is displaced because of the moving particle and the 
accompanying fluid so that the condition that total 
volumetric flux across any plane perpendicular to the 
direction of motion is z e r o  is met. 

The unit cell selected is a unit cube with a spherical 
particle at the center of the cell as shown in Fig. 1. A 
temperature gradient is imposed which coincides with 
the z-coordinate direction. The volume fraction of 
the suspended particles decides the diameter of the 
spherical particle. This particle is assigned a velocity 
in the negative z-coordinate direction which generates 
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a flow field in the surrounding fluid. It is possible to 
find the flow field numerically, but in this study, to 
take advantage cf the existing analytical solution for 
the flow field around a spherical particle, a fictitious 
spherical envelope of fluid surrounding the particle is 
assumed. This envelope is concentric with the spheri- 
cal particle and its diameter is equal to the length 
of the unit cell. By imposing appropriate boundary 
conditions on the surface of the particle and on the 
surface of this envelope and using stream-function 
formulation in spherical coordinates, a steady-state 
flow field inside the spherical unit cell is obtained, 
the details of wlhich are given in the next section. 
According to Happel and Brenner [7], the motion of 
a sphere at the instant it passes the center of a spherical 
container is assumed to emulate the importance of 
wall effects in the motion of a single particle, in 
addition to providing a model of interactions among 
particles in unbounded multiparticle systems. We 
hypothesize thai: the same assumption holds for 
extracting inform ation about micro-convection effects 
on the overall heat transfer occurring in a unit cell. 
It is further assumed that each particle acts as an 
independent source for microscopic heat and mass 
transfer at its spatial location as it translates through 
the fluid. This allows one to obtain a correlation 
between the particle speed and the heat flux across the 
unit cell by studying the steady-state temperature field 
within the unit cell at the instant when the particle 
passes through the center of the cell. The justification 
for the solution the steady-state temperature field is 
not entirely obvious. Firstly, it is supported by the 
assumption that the steady state has been achieved at 
the macroscopic length scale. The implication of the 
first assumption is that the location of the particle 
within the representative unit cell is inconsequential 
for the heat flux in the direction of applied tem- 
perature gradient:. Thus we select the particle location 
which coincides with the center of the unit cell. 
Secondly, we solve for flow using equation (4), which 
gives a solution which is quasi-steady. This means that 
as the particle translates through the fluid, the flow 
field also translates with it instantaneously, justifying 
the use of the steady-state temperature field to obtain 
heat flux across the unit cell. 

3.1. Flow field inside a spherical unit cell 
Let us suppose that a solid sphere of radius a is held 

fixed with its center coinciding with the center of a 
spherical coordinate system in an otherwise uniform 
stream of fluid. Let us further assume that the dis- 
turbance in the uniform fluid flow caused by the pres- 
ence of this sphere is restricted within a concentric 
spherical envelope of radius b. The spherical coor- 
dinate system used is shown in Fig. 2, and the 0 = 0 
direction is chosen to coincide with the uniform fluid 
flow (or particle velocity) direction. Because of the 
axisymmetric nature of the problem, the choice of the 
~b = 0 direction is unimportant. Thus the creeping 
flow past this sphere is a planar flow in spherical 

coordinates which can be described completely by vel- 
ocity components vr and vo in the r and 0 directions 
respectively. For particle Reynolds number Rep <~ O. 1, 
the governing equations are still the same (equations 
(3) and (4)), and the flow field can be obtained using 
the stream function formulation. 

Assuming v, and vo of the following form 

1 ~ 1 a ~  
V r - -  and Vo (7) 

r ~ sin 0 ~30 r sin 0 Or 

where 

~(r, O) = ½Uf(r) sin 2 0 (8) 

is the stream-function in spherical coordinates and U 
is the free stream velocity of the fluid at r = b. It 
has been shown [7] that this formulation rcduces to 
solving the following equation for ~(r, 0), namely, 

V4~ = 0. (9) 

It can be further shown that f ( r )  has the following 
form : 

A 
f (r) = -- + Br + Cr 2 + Dr'.  (1 O) 

r 

It is to be noted that the unknown flow field being 
sought is in the region of space between the particle 
surface and the outer envelope and hence, 

a 
a<~r<~b orequivalently a<~r<<,~ (11) 

condition applies for the entire analysis, where 2 = a/b 
is a dimensionless parameter with the following 
restriction, 

0 < 2 < 1. (12) 

This formulation appears in many standard texts on 
the subject such as Happel and Brenner [7]. The prob- 
lem reduces to finding out different sets of four con- 
stants A, B, C and D corresponding to chosen sets of 
four boundary conditions. In this work, two different 
sets of boundary conditions will be used to obtain two 
different velocity fields to evaluate the sensitivity of 
the final results on the type of boundary conditions 
or flow field used. 

3.1.1. Boundary conditions L To allow comparison 
with the special case of a more general result per- 
taining to translation of two concentric fluid spheres, 
this set of boundary conditions is such that the inner 
sphere is held at rest and the outer envelope is moved 
with speed U coinciding with the 0 = 0 direction. By 
subtracting U from the velocity field so obtained, we 
get the desired velocity field where the particle trans- 
lates with the velocity U in a quiescent fluid. The 
present boundary conditions can be stated as : 

v r = U c o s 0  and v o = - U s i n O  at r = b  

(13) 

and 
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Z 

% 

Impose fluid velocity 
and/or sheer stress 
B. C. at the surface 
of the envelope 

No slip at the 
particle surface 

Fig. 2. Spherical coordinates used to obtain the flow field. 

O r=, 0q~,=o = ff~ = 0. (14) 

Boundary conditions in equation (13) enforce free 
stream fluid velocity at the surface of the spherical 
unit  cell and those in equation (14) enforce no slip 
at the surface of the particle. These four boundary  
conditions yield a set of  four algebraic equations 
involving two known parameters, namely a and 2, and 
four constants A to D which are unknowns.  After 
lengthy algebra and simplification, the following 
expressions have been obtained for constants A to D : 

A = a2B+2a3C+4aSD 

3 5 3 B = --~aC-~a D 

C = (924 + 923 + 422 + 42 + 4) 

(1 - -2 )3 (422+72+4)  

323(224 +623 + 1022 + 9 2 + 3 )  

D = a2 (1_2) (_225  +522_3)(422 + 7 2 + 4  ) . (15) 

Now, using equations (7), (8) and (15) one can express 
vr(r, O) and vo(r, O) as : 

v,= Uc°sO[-~ +B+C+Drz]r (16) 

and 

I ;  3 B _C_2Dr21 (17) vo = Usin 0 2r " 

Verification of the flow field. Since the algebra 
involved in the computat ion of constants A to D is 
cumbersome, it is important  to see that the results 

reduce to Stokes solution for flow past a stationary 
sphere in an unbounded  medium. In the above analy- 
sis, as b ~ ~ ,  2 ~ 0, and one should obtain Stokes 
solution ; thus, as can be readily seen from equations 
(15), as 2--* 0, 

D ~ 0  

C ~ I  

B ~  --~a 

a 3 

A - - * - -  
2 

which is a benchmark solution available in the litera- 
ture. 

To verify that the enforced boundary  conditions 
are satisfied, using equations (16) and (17), functions 
vr/UcosO and vo/UsinO were plotted against r for 
various values of the parameters a and 2. It is found 
that for a wide range of values of the parameters 
used, the boundary  conditions at r = a and r = b are 
satisfied in each and every case. To compare the inter- 
mediate values (for a < r < b) of the above two func- 
tions, the solutions given by Happel and Brenner [7] 
for two concentric spheres in relative motion for a 
special case of rigid inner sphere were chosen. The 
results obtained here match very well with the special 
case given by Happel and Brenner. 

3.1.2. Boundary conditions II. The boundary  con- 
ditions for this case where the suspending medium is 
at rest and a spherical particle is moving with speed 
U in the 0 = 0 direction can be stated as : 

vr= UcosO andvo= -UsinO a t r = a ,  (18) 
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and 

. ~V0 V0 
v , = 0  a n ° ~ - r - - - r  = 0  a t r = b .  (19) 

Here the boundary conditions selected are the ones 
used by Happel [8], in the so-called 'free surface' 
model where on 1:he surface of the spherical envelope, 
the shear stress ~,0, and v, components of fluid velocity 
are set to zero (equation (19)) instead of imposing 
free stream fluid velocity as in the previously stated 
boundary conditions (refer to equation (13)). The cor- 
responding consl:ants for these boundary conditions 
are as follows : 

a 3 

A =:  
(2-- 32 + 325 - 226) 

a(3 + 225) 
n =: 

(2 - 32 + 325 - 226) 

2(3 + 225) 
C ~--: - -  

( 2 -  32 + 325 - 226) 

25 
D --: - ~ - A .  (20)  

Once again, using equations (7), (8) and (20) one can 
express v,(r, O) arid vo(r, O) as: 

( : ' . )  v, = UcosO + - + C + D r  2 (21) 

and 

(: B , C -  2Dr 2) (22) Vo= Usin 0\-zr 3 2r 

These velocities have been numerically verified and 
they do satisfy the boundary conditions stated in 
equations (18) and (19) for a wide range of values of 
the parameters a and b or 2. 

To decide which flow field best represents the phys- 
ics more realistically, we compare the two flow fields as 
well as the shear fields obtained by imposing boundary 
conditions I and II. The plots of v/Ucos O, vo/Usin 0 
and rro/Ul~ sin 0 which are shown in Figs. 3, 4 and 5 
for the two types of boundary conditions are 
compared. For simplicity we have chosen a = 1 and 
b = 2, which meet the condition a < b. It is to be 
noted that shear fields for both the flow fields are 
given by 

Zro 3A 
3Dr (23) 

/~ Usin 0 r 4 

in the z direction and the envelope is stationary, which 
is identical to the physical situation for the second set 
of boundary conditions. From Fig. 3, which compares 
the radial component of fluid velocity, it can be seen 
that at r = 2(= b), because v, = 0, for both the flow 
fields there is no mass transfer across the outer envel- 
ope. From Fig. 4, which compares the tangential com- 
ponent of fluid velocity, in which vt # 0 at r = 2(= b) 
for the second flow field. However, from Fig. 5 it can 
be seen that shear stress (zro) is zero as enforced by 
the second set of boundary conditions, but it is not 
zero for the first flow field. Thus the second set of 
boundary conditions is superior to the first set of 
boundary conditions as there is no mass or momen- 
tum transfer taking place across the outer envelope. 
This justifies the use of the flow field obtained using 
the second set of boundary conditions in the energy 
equation. 

3.2. Governing energy equation 
To investigate steady state heat transfer across the 

unit cell under consideration, it is necessary to solve 
for a steady-state temperature field inside the unit cell. 
We begin with non-dimensionalizing the temperature 
using temperatures T1 and T2, which are bottom and 
top face temperatures of the unit cell. Thus, non- 
dimensionalized temperature 7 ~ can be written as : 

7~ _ T-- T1 (24) 
7"2 -- T1 " 

Since this study is focused on the influence of pure 
convection on the heat transfer, the physical proper- 
ties of the fluid and the spherical particle (thermal 
conductivity and thermal diffusivity) are assumed to 
be identical. 

Furthermore, if the Brinkman number for the 
process, Br = IIU2/(k~lT2- TI I) << 1, one can neglect 
viscous dissipation terms and then the non-dimen- 
sionalized steady-state energy equation can be stated 
a s  [9]: 

eeu" V T - V  27 ~ = 0. (25) 

In Equation (25), u is the fluid or particle velocity, 
Pe is the P6clet number and 7 ~ is the non-dimen- 
sionalized temperature as defined in equation (24). 
Here the P6clet number (=  UL/ct 0 is based on particle 
speed U and the length of the unit cell L. The length 
scale L is related to particle radius a through particle 
volume fraction e which is defined as 

~ = ~ -  

provided respective sets of constants are used. 
In order to ensure a valid comparison, the solution 

for the first set of boundary conditions has been modi- 
fied by subtracting the velocity of the envelope and 
changing the sign of the velocity. This describes the 
situation where a particle moves with the velocity U 

4. NUMERICAL SCHEME 

The unit cell under consideration is discretized in 
three Cartesian directions so that node numbers 
(i,j, k) correspond to the x, y and z directions respec- 
tively. Because of the symmetry of the problem about 
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the z axis, the choice ofx  and y directions is immaterial 
and the solution is sought only in one quarter of 
the unit cell. The energy equation (equation (25)) is 

discretized using the control volume approach which 
gives an algebraic equation (conservation of  energy) 
at each spatial node. For  a node which is completely 
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surrounded by fluid, this discretization can be stated 
a s "  

Pe[u(i-- 1,j, k) : ( i -  1,j, k) 

-- u(i + l ,j, k) T(i + 1,j, k)] AyAz 
2 

+ Pe[v( i , j -  1, k ) T ( i , j -  1, k) 

AzAx 
- v ( i , j +  1,k)T(i , j+ 1,k)] 

+Pe[w(i,j, k -  1) T(i,j, k -  1) 

AxAy 
-w( i , j ,  t c+l )T( i , j , k+l ) ]  2 

[ t ( i , j ,  k) - 7~(i - 1,j, k) 

=L ~x 
~(i+ 1,j, k) -- 1"(i,j, k).] AyAz 

J Ax 

V:(i,j, k) -- f '(i,j-- l, k) + 
L Ay 

~(i,j-F 1, k) - T(i,j, k ) l  AzAx 
Ay I 

[)O(/,j, k) - T(i,j, k -  1) 
+ 

L Az 

_ 

This equation is identical for spatial locations either 

in the fluid or solid portion of the unit cell because 
thermal properties have been assumed to be identical 
here. However, for all the nodes belonging to the solid 
portion, the imposed velocity is simply (0, 0 , -  U), 
which is the particle velocity. This algebraic equation 
(equation (27)) consists of known fluid velocity com- 
ponents from equations (21) and (22), and unknown 
temperatures at the node under consideration and the 
surrounding six nodes as well. As shown in Fig. 1, a 
steady-state temperature gradient is assumed in the 
vertical direction in a sedimenting suspension which 
is unbounded in the horizontal direction. This leads to 
the temperature and flux boundary conditions which 
have been applied on the six faces of the unit cell 
under consideration. These conditions are 7 ~ = 1 at 
the top face, 7 ~ = 0 at the bottom face and heat flux 
Q = 0 at all the four remaining vertical faces of the 
unit cell. Using successive substitution, imposed 
boundary temperatures are 'numerically diffused' 
throughout the unit cell until a steady-state tem- 
perature distribution is obtained. Using this tem- 
perature distribution, energy flux is computed at the 
top and the bottom face of the unit cell by 3-point 
asymmetric finite-difference schemes to approximate 
thermal gradients at the node under consideration. 
For  the bottom face (z = 0) on which k = 1, the 3- 
point asymmetric forward difference is used as 
follows, 

(i,j, 1 ) - - I. 5 T(i,j, 1 ) + 2.0Az'F(i,j, 2) - 0.5 T(i,j, 3) 

(28) 
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For the top face (z = L) on which k = Kmax, the 3- 
point asymmetric backward difference is used as fol- 
lows [10], 

1.57~(i,j, Kmax) - 2.0 7~(i,j, Kmax - 1) 
~ ( i , j ,  + 0.57~(i,j, Kmax - 2 )  

Kmox) Az 

(29) 

These energy fluxes should be identical for this case 
because there is no flux boundary condition at the 
four vertical faces of the unit cell. This provides an 
additional check on the accuracy of the numerical 
technique. This flux is non-dimensionalized as fol- 
lows : 

Q ,  = Q . . . . . .  tive -~- Qconductive (30) 
aconductive 

In the definition of Q*, Qconctuctive denotes the con- 
ductive flux across any horizontal plane of the unit 
cell in the absence of fluid motion, i.e. for the case 
when Pe --=- 0 and all other boundary conditions are 
identical. Thus Q* is an appropriate measure of 
enhanced heat transfer across the unit cell. 

To ensure correctness of the numerical scheme, a 
flow field (u = 0, v = 0, w = constant) was imposed 
within the unit cell with the same temperature and 
flux boundary conditions on the unit cell as stated 
earlier. The analytical solution for the steady-state 
temperature distribution within the unit cell for this 
case compared well with the numerical solution. Fur- 
thermore, convergence of this numerical scheme has 
been verified by mesh refinement for many different 
volume fractions as well as P6clet numbers. A typical 
plot of convergence of Q* vs number of nodes in a 
coordinate direction is shown in Fig. 6. 

5. RESULTS 

For all the cases studied, the flow field obtained 
using the second set of boundary conditions (refer to 
Section 3.1.2) is used. This flow field is more consistent 
with the unit cell model in which the fluid outside the 
outer envelope is stationary. It was also found that if 
the flow field obtained using the first set of boundary 
conditions were used, then the Q* values did not differ 
by more than + 3%  as compared with the values in 
Fig. 7. In all 162 cases were simulated for Ptclet num- 
bers 0-17 for nine different volume fractions which 
were 0.001, 0.002, 0.003; 0.010, 0.020, 0.030; 0.100, 
0.200 and 0.300. The results of these simulations are 
shown in Fig. 7. It is to be noted that these results are 
valid even at a high volume fraction of 0.300 simply 
because the resulting higher particle interactions have 
been taken care of by confining the flow disturbance 
within the spherical unit cell. For volume fractions 
greater than about 0.350, the present numerical 
scheme becomes unstable because of the sharp rise in 
the magnitude of discontinuity in the Vo component 
of velocity at the outer spherical envelope (see Fig. 4). 

From the graphs in Fig. 7, it is clear that the rate 
of heat transfer increases monotonically with the cell 
Ptclet number for all ranges of volume fractions. The 
enhancement is negligible whenever Pe < 1. Also for 
lower volume fractions (e ~< 0.003), the enhancement 
is negligible irrespective of the Ptclet number for the 
range covered here. It is also apparent from the graphs 
that the enhancement increases monotonically with 
the volume fraction and becomes non-linear as the 
volume fraction increases. Also the degree of non- 
linearity increases with volume fraction. However, it 
is important to note that the monotonic increase in Q * 
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with e will not continue indefinitely as the temperature 
gradients at the unit cell wall are bounded by the 
analytical solution for the cases when the entire fluid in 
the cubic unit cell[ moves with the velocity components 
u = 0, v = 0 and w = + (non-zero constant). 

5.1. Introduction o f  a modified Pkclet number 
In order to see if the results of Fig. 7 could be 

collapsed together, a numerical search was conducted 
to find out a physical parameter that would collapse 
all the 162 case studies. Since there are only two par- 
ameters, namely the Ptclet number and the volume 
fraction, describing the system, their proper com- 
bination would be able to correlate the results. It 
should be emphasized here that inter-particle distance, 
L, and particle volume fraction, e, are correlated for 
a fixed particle radius, a, as can be seen from equation 
(26). Thus, for a fixed particle size, the Ptclet number 
can be scaled using the volume fraction e. By intro- 
ducing a modified Ptclet number, 

Pe' = Pe x e 3/4 (31) 

a clear collapse of the numerical results was achieved 
as depicted in Fig. 8. This indicates that enhanced 
heat transfer can be related to the modified Ptclet 
number for the range of  volume fractions investigated 
here. This allows us to relate enhanced heat transfer 
to modified Ptclet number using a fourth-order poly- 
nomial which can be useful in a variety of  ways for 
process modeling and development. The polynomial 
can be stated as : 

Q*(Pe')  = f ( P e ' )  = 1.000+0.0556Pe' 

+ O. 1649Pe "2 -- 0.0391Pe '3 + 0.0034Pe '4. (32) 

How a simple polynomial relationship between heat 
transfer across a unit cell and modified Ptclet number 
can be useful is illustrated in Section 5.2. 

5.2. Explanation f o r  modified POclet number 
Various scaling laws and the possibility of using 

perturbation analysis to explain equation (31) quan- 
titatively were explored. Scaling laws oversimplify the 
3-D problem at hand and a perturbation expansion in 
e (which is a parameter) for the temperature dis- 
tribution would require solving zeroth-, first- and 
higher-order problems numerically because of the 
complex 3-D domain. Thus, what follows in the next 
paragraph is an attempt to explain equation (31) 
qualitatively. 

The results of the numerical case studies as well as 
the existence of the modified Ptclet number suggest 
that there exists a characteristic velocity other than U 
which is related to the volume fraction in some manner 
for the present configuration, A simple analysis which 
is valid for cylindrical geometry can give some clues 
to this characteristic velocity. If  an elemental disc of 
radius a is assumed to be translating with a z,velocity 
of  - U ,  then the average velocity of  the fluid in the 
surrounding envelope is 

/7 = ( a2 .~U. (33) 
\1 - -a2]  

This would modify the cell P6clet number as 
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U L O  
Pc'  = - -  × - -  

U 

= 

pe(eZ/3 + ~4/3 ..~ e2 ..[_/~8/3 ..~ . . . ) .  (34) 

Thus it can be seen that the average velocity of the 
fluid in the annulus surrounding the falling disc could 
be the characteristic velocity for the convective heat 
transfer which occurs at low volume fractions. 
Although this oversimplifies the 3-D heat transfer that 
occurs because of the motion of a spherical particle 
inside the unit cell, it supports our view that heat 
transfer in the 3-D unit cell is characterized by a vel- 
ocity other than U. 

5.3. Ef fec t  o f  d is t r ibuted  velocit ies on enhanced  heat  
transfer  

So far the discussion was based on the P6clet num- 
ber which is assumed to be uniform in the unit cell 
and hence throughout the suspension. Thus the results 
obtained so far are applicable to unit cells that all 
have a particle translating at the center with a steady 
fall velocity and with zero standard deviation. One 
can apply these results to a suspension of particles 
which show distributed velocities about a mean fall 
velocity, to explore how it affects the enhanced heat 
transfer. For example, if a normal distribution is 
assumed then, because of the non-linear dependence 
of Q* on Pc' ,  the weighted mean of the enhanced heat 
transfer would be different from the estimate based 
solely on the average fall velocity of the particles. 

For a suspension which has achieved normal par- 
ticle fall velocity distribution, unit cells will have par- 
ticles with fall velocities which follow a normal prob- 
ability density function (p.d.f.). One can estimate the 
effect of micro-convection on enhanced heat transfer 
Q* by finding an average velocity from the dis- 
tribution of velocities and calculating the average 
modified Ptclet number (/~e') based on the average 
velocity (t_7) and using equation (32) to find Q *, which 
we denote as Q* (/~e'). However, this estimate cannot 
account for the effect of higher moments of the p.d.f. 
on enhanced heat transfer due to micro-convection. 
To incorporate the effect of the distribution function 
on the overall heat transfer occurring at an average 
particle fall velocity, we compute a modified Ptclet 
number for each particle velocity and then use either 
Fig. 8 or equation (32) to find Q*. The sum ofaU such 
Q*s duly weighed by the p.d.f, for each fall velocity 
gives us a correct estimate of enhanced heat transfer 
due to micro-convection and we denote it by Q*(Pe ' ,  
tr). This notation is used here to stress the fact that 
enhancement depends on /~e', the mean modified 
Ptclet number, as well as on a, the standard deviation 
or the second moment of the p.d.f. 

Q*(l~e ', tr) accounts for the shape of the p.d.f, as 
well as the functional form of the polynomial and 
hence it is the correct estimate. The % error which 
one must expect if only the average modified Ptclet 
number based on the average particle fall velocity is 
used is then, 

Q *(/~e') - Q*(/~e', ~r) X 
%error = ~--~-j~, ~ 100. (35) 
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Fig. 9. Regimes of expected % error in the predicted heat flux based on the suspension parameters. 

This is illustrated in Fig. 9 where the assumed p.d.f. 
is a normal distribution and the selected volume frac- 
tion is 0.3. On ~Lhe y axis is the fractional standard 
deviation of the normal  distribution (a//~e'). The x 
axis is the averaged modified P6clet number.  The three 
plots separate the zones in which errors are less than 
l, 5 and 10% respectively. 

The usefulness of  Fig. 9 can be demonstrated by an 
example where the averaged modified P6clet number  
(/~e') is 1.0. If  the particle fall velocities in the sus- 
pension show a//~e ' = 0.90, then the error in the esti- 
mated enhanced heat transfer based only on/~e' would 
be 5%. It can also be seen that if the suspension were 
to have a higher: standard deviation of a//~e ' =  1.3, 
then the error would be 10% instead of 5%. Thus this 
diagram is a useful tool for a designer in estimating 
error based on tile suspension parameters. 

6. S U M M A R Y  

In a monodisperse suspension of particles showing 
non-attine motion, micro-convection can play a sig- 
nificant role in the overall heat transfer at a macro- 
scopic scale. In order to test this hypothesis, a sim- 
plified process model based on the concept of a unit  
cell was presented. Inter-particle hydrodynamic inter- 
actions were accounted for by confining particle- 
induced flow disturbance to a spherical envelope of 
unit  diameter. The governing energy equation was 
solved numerically using a closed form solution for 
the induced flow field. After testing the accuracy as 

well as the convergence of the numerical scheme, a 
range of case studies was performed for low P6clet 
numbers which are typical for a process such as gravi- 
tational settling, used commonly in industry. For  low 
particle volume fraction (e < 0.003), the effect on the 
micro-convection was negligible. For  high particle 
volume fractions (0.1 ~< e ~< 0.3) the enhancement can 
be significant and can be 100% higher than pure heat 
conduction. 

A close scrutiny of the results revealed that by intro- 
ducing a modified form of P6clet number  
( P c ' =  Pe x e3/4), which combines particle volume 
fraction and the cell P6clet number,  enhanced heat 
transfer could be expressed as a polynomial function 
of Pc'.  The usefulness of such a correlation was dem- 
onstrated in the case of a suspension showing dis- 
tributed particle fall velocities by computing expected 
errors in the estimated enhanced heat transfer based 
only on the mean particle fall velocity. 
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