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The statement and solution of a new problem are presented for fluid wave
motions at the injection of vertical axisymmetric jet into a stable stratified fluid,

which density linearly increases with the depth. Flow in the jet is assumed

to be potential, the motion of stratified fluid is described by Boussincsq's ap-
proximation. The dispersion equation is derived and analysed. The condi-
tions of wave e:istence arc found and the analysis of phase and group ve-
locities and wave modes is presented. It is shown that in outer medium the
wave disturbances propagate along the jet as it was observed in experiments.

* • •

Introduction

problem of jet flows is of great theoretical and applied importance and it has been consid-
ered in numerous investigations.

There are many works devoted to several aspects of the jet analysis such as supersonic jets
in gas, turbulent jets, jet stability, experimental investigations. At the same time, a considerable

number of works deal with plane jets. Analysis of these works is beyond the scope of this paper.

We consider some works relating only to circular jets in the cases of laminar regime or potential

now corresponding to the initial stage of smooth directed jet intrusion before the jet is able to be

extended and evolved. Also, some works for jets in the presence of crossflow are considered.

Some self-similar solutions are presented [1 — 6] in most of theoretical works. For example,

in [I] the self-similar solution has been obtained for the case of large radial non-axisymmetric os-
cillations of fluid column - jet (plane problem) so that the region boundary is the unknown function
to be determined. The fluid is assumed to be inviscid and incompressible. In general there is a few
of known semi-similar solutions but there are many works analysing the jet behaviour on the basis
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of these solutions.

Some analytical solutions for circular jets have been obtained in [6 — 12]. The theory of a thin
jet with surface tension is developed in [9]. The potential motion of axisymmetric jet externally

bounded by the free surface r =	 , t) is considered, at that the external pressure is assumed to
be constant and the surface tension is taken into account. The surface and the flow are assumed to
be changed smoothly along the axis that it is characterized by the small parameter c -- (ratio of the

radial and axial scales). The potential (p and the radius R are expanded in power series on E 2 and as
a result the second order partial differential equation is derived representing the theory of thin jets in
terms of leading order terms. In [13, 14] the development of capillary waves in axisymmetric liquid
jet is investigated in nonlinear statement. The paper [13] developes a robust approximation for the
injection of vertical jet into atmosphere in the case when the influence of the external medium on a
jet stability is not taken into account. Also, in doing so the fluid is assumed to be inviscid and in-
compressible and the flow potential. In this case the initial axisymmetric disturbance of the surface
is assumed to be given in the form of standing sinusoidal wave. The solutions for the jet surface
deviation n and the potential (p are searched in the form of expansions in the small amplitude pa-
rameter no of the given standing wave. The paper [7] presents the statement and numerical solution
of the problem for laminar axisymmetric jet. The vertical stationary jet intruding with a mean axial
velocity into another fluid is considered. Both of the fluids are assumed to be incompressible, im-
miscible, Newtonian. The velocity profiles are constructed and analysed. In [10, 11] the numerical
and experimental analysis of the laminar circular jet with taking into account the viscosity and sur-
face tension is carried out. In [I I] the problem of the vertical circular jet injection into the resting
fluid is investigated. The case is analysed when the standing waves on the jet surface are given at
initial state. Both of the fluids are assumed to be viscous (Newtonian) and incompressible. The
initial-boundary value problem is solved using the exact solution in closed form, having obtained
for inviscid fluids in [15], and the analytical solution for viscous fluids obtained in [16].

The developing structure of accelerating jet at a crossflow investigated in [17]. In [8] the jet
behaviour in crossflow is investigated on the basis of asymptotic method. The fluid is assumed to
be incompressible and inviscid, the flow potential. The velocity components of the external flow,
normal to jet axis, are taken to be small relative to the jet velocity that allows to introduce a small
parameter. Asymptotic solutions in near and far zones are developed.

Experimental investigations of [18] reveal that near the inlet, at the initial part of injection, the
jet does not deviate from the vertical position and keeps a stable form even in the presence of a
crossflow, e. the initial part may be considered as a zone of stable potential flow. However, waves
may propagate along the interface.

Earlier it was noted in [19] that streamlines at the potential zone are strongly parallel to the jet
direction, and one can suppose that the cross-flow does not . distort the jet, that is the stability at the
initial part takes place. In what follows the jet is expanded and deviates primarily in the laminar
regime, then in the turbulent ones, and, lastly, disintegrates and drifts down the flow. At the same
time in [18] wave disturbances were observed in a jet vicinity.

In this paper the initial stage of the injection is investigated so that the jet is assumed to be
axisymmetric in agreement with considerations above presented.

1. Statement of Problem

The axisymmetric problem for vertical jet of the diameter D injected into a steady density
stratified fluid is considered. The problem is solved in linearized statement. It is convenient to
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introduce the cylindrical coordinate system r, 0, z, so that the z-axis coincides with the jet axis and

it is directed downward. The region occupied by the jet is

= {r, 0, zir E [0, D/2], 0 E [0, 27rj, z E (-00, oo)).

The external medium occupies the region

11 = fr, 0, zir E [D/2, oo), E [0,	 z E (-00,00).

The fluid in the jet is considered to be inviscid, incompressible, the undisturbed velocity Uo is
assumed to be uniformly distributed over the cross-section of the jet. This allows to introduce the
total potential by the formula

= (D3

and by virtue of considering linear problem to present the total field as a superposition of undisturbed
and disturbed components [4]

(1)i (r, z, 1) = Uoz + coj (r, z, t),

= Uo
az

a(pi=
or	 ar

The disturbed motion is described by the potential (p3 satisfying the equation

04)3

a ( av»)

57-

a2 (pi

az	
0j.2 =0 in	 0j. (1)

As the governing equations for the motion of stratified medium, we take the linear equations of
hydrodynamics of incompressible, inviscid fluid in Boussinesq approximation [20]. These equations
in the cylindrical coordinate system in the region fl are written in the form

ap
=

at	 Or
aw ap

p = 0
at az

aP = N2w
at

1 aaw
Crvr
 

)
 

—
r Or	 Z

(r 2E)	
02w

r ur	 ar	 ataz

where p and p are the density and the pressure, w and v,- are the velocity components of stratified
fluid motion along the axes z and r, respectively, N is the Brunt—Vaisala buoyancy frequency. After
simple transformations the system of equations (2)— (6) can be reduced to the following resolving
equation

02 11 a ( Ow	 02w a 	 aw
= 0.	 (7)at2 ar	 Or )	 az2+ N

2	 r
r Or	 Or
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The matching conditions at the fluid interface r = 1 2 are of the form [21]

	

(02 (pi avr	Ovr
= 00U	 —

Olar	 az	 at r=i

where pio is the fluid density in the jet. Moreover, we define the regularity conditions on the axis
and the boundedness condition of the functions at infinity

thpi
= u at r = 0,	 Vr, W, p < 00 at r	 oo.	 (10)

It should be noted that all the values in Eqs. (1)-(10) and further are dimensionless introduced
by the formulae (asterisks are omitted)

(1* * ) Z * ) = --D--,r, z,,	 =	 p*	
poogp

	

D	 P
—w ' P = —Poo

, Po*i = '2-
Poo

1
(7):. , w,U(;) = vgD (vr, w, Uo) , k* = Dk,

N.2(z . ).	 N2(z),	 (p .	 1	 (p

DV-975

where poo is the undisturbed density of stratified medium.

2. Investigation of the Running Wave Propagation

We consider the solutions of Eqs. (1), (7) in the class of traveling waves along the axis z

{(7),w}
	

{(i)3 (r),ii)(r)} exp	 z	 cot)] ,	 (12)

where k and w are the wave number and the angular frequency.

Substituting Eq. (12) to Eqs. (1) and (7)-(9), respectively, leads to the following system

d2 (i0i	1 dCoi
—;„ + -	 n2yr u	 in	 CP,
ar-	 r a•

d2 11)	 1 dli)	 k 2
—	 „	  = 0	 in	 S2,

(11**'	 1* th 	 N2/(412 — 1

iirlf= = 0,

ik pio (U 0 -	 Oi I r= = -P	 •

dr 
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Taking into account the regularity condition on the axis (10) the solution of equation (13) is written

in the form [22]

(?) ( r) =	 ( kr).	 (17)

Crossing to a new variable
k

	

r1 = k 1 r,	 k 1
 = VN2/w2

transforms the equation (14) to the following form

	

d2 ti)	 1 dti)
11) = 0 .

d•1	 v i dr1

The solutions of the equation (19) may be written both in terms of the Bessel functions of the
first kind and in terms of the Bessel functions of the third kind, that is in the liankel functions [22].
The former one describes standing transverse waves, the latter one describes traveling transverse

waves.

Let	 consider the solution of (19) in the 1-lankel functions. Taking into account the condi-

tions (10) the solution is written in the form

111(0 = C3H(()1)(k1r).

Substituti .T. Eq. (20) into Eqs. (2)—(4) allows to determine the other searched functions

N2

	

= z	 c 3 He) (k 0.)

f)r (7)C3111(1) (kir))

gr) = -w2 H 1 ) ( k r)
k? 3 °	 1 •

It should be noted that by writing the solution in the Hankel functions we exclude thus from the
consideration imaginary values of the wave number k [24]. The radicand in the coefficient k 1 (18)
is always positiv'e since internal waves can exist only with the frequency w < N [20,25j.

Substituting the solutions (17), (22), (23) into the matching conditions (15), (16) yields the
dispersion equation of the form

.1 ( k/2 )	 (Uo / c — 1) 2 1/11)(k1/2)
 --0.

1'0 (0)	 N2 1w 2 — 1 /41)(ki/2) 

Let us investigate this equation. At any k the first term in (24) is always positive:

/0(k/2)//1(k/2) > 0.

Due to N 2/w2 — 1 > 0, the coefficient in front of the ratio of the liankel functions is also always
positive. So, the equation (24) can be written in the form

H1 1) ( k 1/2) = 0,1 
+ A le (k1/2) (25)

(24)

58



where A is a positive coefficient. Representing the I lankel functions by the Bessel functions ac-
cording to the formula

	

1-1V('y) = .1,„(7) +	 = 0,1),

allows to reduce the equation (25) to the system of two equations

Ji(k1/2)1
Jo( k1/2 ) [1 + A 

Jo(k1/2).1 = °'

0.
o f

Y41 + A
Yo

1(
(k /

/
2
2

)
)

I =

There are four cases of solvability of this system:

Case 1.

	

Jo(k1/2) = 0,	 Yo(ki/2) = O.

It is known from the theory of Bessel functions that positive roots of two linearly independent real
cylindrical functions of the same order are alternate [22]. It follows from above that there isno such
k i > 0, when Jo(k 1 /2) = 0 and Yo(k i /2) = 0 simultaneously.

Case 2.

1 + A
Ji(k112) 

= 0,
Jo(ki/2)

1 + A 
Yi(ki12) 
Yo(k1/2) 

= 0
'

(30)

Let us consider the Wronskian [22]

2
('Y) Y0(7) — (7) Y1(7) = 7

which is transformed to the form

	

1.11(7)	 Yib)] =

	

JoblY0(7) jo('Y)	 Yo('y)

As lar as the Wronskian (29) is not equal to zero, then always

Jib) 
Yo (7)

Thus, there are no such real values of k i > 0 which turn into zero both of the equations of (28)
simultaneously.

Case 3.

	

Jo(ki/2) = 0,	 1	
+ A Y 

Yi(ki/2) 
= 0

o(ki/2)	 0,

	

It is seen from the graphs and tables of the Bessel 	 functions Jm('y)	 (m = 0, 1) [22,26] that
the roots of these Bessel functions are placed by the following manner: if k i /2 is the root of the
function J0 (7) then the values of the functions Yo(7), Yi (7) in this point are either of the same sign
or k i /2 is also the root of the function Y1 (y). Hence the second expression will be different from
zero. So, in this casethe system also does not have any solution.

Case 4.

Yo(k1/2) = 0,
Ji(ki/2) 

1 + A 	 = O.
Jo(k1/2) 

2

7111
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In this case we observe a picture analogous to considered one in the previous variant. If k 1 /2 is the
root of the function Yo(7) then the values of the functions J 0 (7), J 1 (7) in this point are either of the
same sign or k 1 /2 is also the root of the function J i (7) and the second expression will be different
from zero.

On the basis of stated above the conclusion can be made that the system of equations (26), (27)
is unsolvable and, a consequence, the dispersion equation (24) has no solutions in the region of real
values k 1 > 0.

Let us now write the solution of equation (19) in terms of the Bessel functions of the first kind.
Having carried out the same algebra yields the dispersion equation of the form

I (k/2)	 pi; (Uo/c 1) 2 Ji(k1/2)

10 (k/2)	 iN2/(,)2 — Jo(k
1
I2) — •

Crossing in the equation (31) from the angular frequency w and the wave number k to the phase
velocity c and the wave length A by the formulae k = 27r/A, w = c27r/A leads to the following
equation

ONA/27re.)2	  iter/A) 
to(7r/A) VRA/27r02 )

7r/A 

+N'( - 1) 2 J 1 ( 	 7/A 
\ANAl271-c)

= 0	 (32)

3. Analysis of Wave Dispersion

To simplify the following analysis of the dispersion equation (32) we introduce the replacement

7r/A

and transform the equation (32) to the form

./ 1 (x) e 410 (x) = 0,	 (34)

where

e(x) = 

PO [2 Uo	 + 05) 2 — N (tn2	
2 ro et) •

N2 (f)) 3 x	 It	 (i)

The coefficient e(x) in the dispersion equation (34) is always positive. So, the left-hand side of the
equation (34) can change its sign only at different signs of the values J 0 (x) J i (x) . It is seen from
graphs of the functions Jo (x), J 1 (x) [27] that the real root of (34) is between the roots of the Bessel
functions J 0 (x) , J1 (x). Then from the equation (32) we obtain the estimate for the bounds of phase
velocity

N ()2	 N(7)2	< c <	 = 1,2,...),	 (36)
2V(0 2 1/(x002	2	 + 1/(Xii)2

where xoi , x ii (i = 1, 2, ...) are the roots of the Besse! functions J 0 (x) , J i (x). It is seen from
formula (36) that the phase velocity depends on the wave length, the buoyancy frequency N and the
value of the roots of the Bessel functions.

(31)

x =
ONA/27rc) 2 — 1

(33)

(35)
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Fig. I. Pahse velocity C (curve 1) and group velocity Cg (curve 2)
versus wave length A.

Let us estimate the order of the coefficient e(x) according to data presented in [18]: the buoy-
ancy frequency N	 0.1, the jet density pl; 	 1, and the flow velocity Uo 	 6. In this case the

ratio

	

/0 (7r/A)	 /0 (yr/A)
(riA)(7r/A)

	

< 1 and	 = 1 when A 0,

Il (7r/A)	 1	 ,
—7r/A when A oo.

io Or/A)	 2

Therefore

N 2 (A)3 

	

e(x)	 when A —+ 0,
4p4U(.?

(37)
1

	

e(x)	 2 when A	 oo.
2pli x	 )

The values of the coefficient e(x) have been calculated in a large range of wave length A. As a result
it was determined that in the range under consideration the value e(x) does not exceed the order of
10-5 . This allows us to take the value of the root of the Bessel function J i (x) as the solution of the
equation (28) with an error not exceeding the order of 10-5 . Thus with the same degree of accuracy
we may determine the phase velocity c

NXii ( A/ir ) 2e =
2V1	 (AXi/

The group velocity is determined by the formula

1 + (Axiihr) 2 •
Cy =
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Fig. 2. Behaviour of normal mode in radial direction in the external medium:

solid curve — the 1-st mode, dashed curve — the 2-nd mode.

Fig. 3. Change of normal mode in the jet viz in radial direction:

solid curves — the 1-st mode, dashed curve — the 2-nd mode.

It follows from the analysis of the dispersion equation that the plane c(A), A (Fig. 1) is separated
onto two regions by the curve c = NA/(27r). In the upper region c > NA/(27r) solutioni do not
exist, in the lower region the curve c(A) is close to the asymptote, with changing A from 0 to oo the
value c(A) deviate 11::;', down from the asymptote, then it has a point of inflection and approacheing
the line c = NA/(27r).

It may be revealed from the analysis of group velocities that for waves propagating in the
positive direction the group velocity is negative. Therefrom it follows that the energy transport
takes place in the negative direction that is the back wave takes place.

Figs. 2, 3 represent the wave modes. It should be noted that the wave modes in the jet and in
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Fig. 4. Wave frequency co versus wave number k:

solid curve - the 1-st mode, dashed curve - the 2-nd mode.

the external medium are appreciably different. Forms of the wave modes in the jet depend on the
wave length while the wave modes in the external medium are independent of A. The external mode

decreases oscillating as 1/Vi: and at the distance 10D from the jet surface it decreases fivefold.
Moreover, the mode amplitudes in the jet are several order less than in the external medium (10-3).
The conclusion could be drawn from here that the transport of wave energy in the jet is sufficiently

less than in the external region adjoining the jet.

Fig. 4 presents the dependence of the angular frequency co on the wave number k. It follows
from this Figure that the phase and group velocities steadily decreasing with k. The analogous
picture of the behaviour is observed for inertial waves [20]. From here a conclusion may be drawn
that the statement of the problem presented here within the framework of the Boussinesq model
allows to describe inertial waves while the Brunt—Vaisala buoyancy frequency corresponds to the
Coriolis frequency.

Conclusions

The article presentes the statement and the solution of a new problem of wave propagation in
stratified fluid generated by a vertical jet intruding into the fluid. The dispersion equation is derived
and the analysis of phase and group velocities is carried out. The dependences of phase and group
velocities on the wave length A and the Brunt—Vaisala buoyancy frequency N are found.

It is shown that for real values of the angular frequency co and the wave number k solutions in
the class of traveling waves propagating in stratified fluid from the jet in the radial direction do not
exist. Flowerer, there are wave disturbances localized near and propagating along the jet.

From obtained results it follows that there are waves in the external medium which propagate
near the jet surface and they were observed in the experiments of [I 8].

The group velocity is shown to be negative that is the energy is transported in the direction
counter to that of wave propagation. Moreover, the energy transport in the jet is sufficiently less

than in the external near jet region.
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