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Energy dissipation in Newtonian fluids containing a unified vortex field is shown to depend on
−η

∫
V (� 2 + λ2ζ 2)dV , where η, � and ζ = u ×� are viscosity, vorticity and swirl. This term augments

viscous dissipation where stream tube geometry is curved, e.g., in turbulent or helical flows.
© 2008 Elsevier B.V. All rights reserved.
1. Introduction

We present a physically motivated analysis showing how a uni-
fied vortex field contributes to the excitation and energy dissipation
in fluid flows. The embedding of a unified vortex field, vortex field
for short, into the description of a flow leads to new pathways
for energy dissipation that are important in the description of
some experimental flows. These new pathways augment the vis-
cous dissipation described by the Navier–Stokes equations where
such dissipation is proportional to velocity gradients. The physics
describing these vortex field modes of dissipation are shown to
extend the Navier–Stokes equations in a way that self-consistently
modifies the velocity, vorticity, and swirl fields of the flow. Fluid
flows can then be described by combining the Navier–Stokes equa-
tions and the equations for the vortex field.

The increased dissipation is also expected to be important for
flows in which there are geometric constraints or coupling to
external fields as occurs in astrophysical objects such as galax-
ies, stars, etc., magneto-hydrodynamic (MHD) and aeronautical
flows [1]. This is especially true for geometrically constrained flows
containing helical or swirling components to their flow field [2].
A common approach to describe such additional dissipation in
a turbulent flow is to introduce flow-dependent eddy viscosities
involving additional viscous stress terms into the Navier–Stokes
equations [3]. The vortex field is an alternative to eddy viscosity
approaches and has the additional advantage that it leads to a self-
consistent fluid flow gauge theory. Another contemporary avenue
of turbulence research consists of studying vortices in hydrody-
namic flows [4]. The present approach differs in that we consider
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a unified vortex field made self-consistent with the Navier–Stokes
equations.

In Sections 2–4 we describe how the embedding of the unified
vortex field {�,ζ } to the flow contributes to the balance of stress-
energy in the flow. We show how this generates an additional term
in the Lamb–Stokes (kinetic) energy dissipation relation that we
call the λ-effect. It is shown how the inclusion of the λ-effect leads
to a modification of the Navier–Stokes equations. (This modifica-
tion vanishes in the absence of the vortex field.) The λ-effect also
leads to a physically appealing explanation of the long-standing
problem of vortical structure and augmented energy dissipation in
helical pipe flows measured by White and Taylor [5–7].

2. Vector fields characterizing a flow

In a three-dimensional vector space, given non-collinear ve-
locity u and vorticity � vectors, we can form another vector
ζ = u ×� , called the swirl vector. (In this, the negative of the vec-
tor ζ is sometimes called the Lamb vector [8].) From the last two
vectors, the unified vortex field combines the vorticity, � ≈ ∇ × u,
and the swirl, ζ ≈ u × � , field vectors in a way that is similar
to the unification of the electric and magnetic fields forming the
electromagnetic field. This is important because the unified vor-
tex field {�,ζ } makes a contribution to the stress-energy balance
[9, p. 505] in fluid flows that is additional to the stress-energy ac-
counted by the Navier–Stokes equations [10]. The stress-energy in
the case of Navier–Stokes theory combines the energy of the flow
with the stress tensor in a way that respects the finite speed of
propagation of transverse waves in the flow [11]. From the kinetic
energy part of the stress-energy, proportional to u2, we compute
the energy dissipation dE/dt to be proportional � 2 as shown in
the next section. Thus, the Navier–Stokes stress-energy is a func-
tion of u (and its spatial derivatives) and its energy dissipation has
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a dependence on � . The characterization of the flow by the vec-
tors {u,�, ζ } can be further linked to physical processes in the
flow.

For wave systems in a fluid constrained by a maximum speed,
cm , propagation is necessarily accompanied by a transfer of
energy–momentum [9, p. 505]. This energy–momentum transfer
can occur via transverse vortex wave propagation or longitudi-
nal wave propagation, in addition to the stress-energy derived
from the Navier–Stokes equations. Finite speed, longitudinal sound
waves travelling in a moving fluid lead to energy–momentum
transfer in any direction. Thus, this transfer could be parameter-
ized by all of the vectors {u,�, ζ }. In Navier–Stokes theory, for
compressible fluids, longitudinal sound waves have finite speeds,
whereas for incompressible fluids this speed is infinite. The prop-
agation speed, cm , is finite for transverse waves. As shown below,
finite speed vortex {�,ζ } wave fields can be effective carriers of
the energy–momentum in addition to the velocity field u, since
their effect spans all length scales and they couple into the flows’s
inertia. We will also show that the vortex field’s stress-energy de-
pends on � 2 and ζ 2. As these fields contribute a stress-energy
that is additional to that contributed by the Navier–Stokes the-
ory, we say the vortex field represents an excitation of the flow.
The excitations lead to an increase in the energy dissipation (rate)
dE/dt . Thus, the stress-energy balance of the flow including the
vortex field, the fluid inertia, and the Navier–Stokes stress-energy
can be expressed as a function of the three directions {u,�, ζ }
that physically characterize the flow. Then, in the description of
the stress-energy balance of the flow involving the inertial, vis-
cous, and vortex fields, each component can be expressed as a
function of the three vectors {u,�, ζ }.

3. Lamb–Stokes dissipation relation

For an incompressible fluid described by the Navier–Stokes
equations, we obtain an estimate of the energy dissipation. This
allows us to introduce the Lamb–Stokes energy dissipation re-
lation. Energy (dissipation) relations are important because they
have the easiest to identify vortex field contribution. The Navier–
Stokes equations are written in the form [9]

ρ

(
∂u

∂t
+ u · ∇u

)
+ ∇p = η∇2u, (1)

ρ
Du

Dt
+ ∇p = η∇2u, (2)

∇ · u = 0. (3)

The left-hand side describes the inertial effects of the flow. It con-
tains the material derivative of the Eulerian velocity field as well
as the effects of a pressure gradient. The convective term u · ∇u of
the total derivative D/Dt contains the main non-linearity leading
to the development of turbulence. In the standard notation, ρ is
the fluid density, the velocity vector is denoted by u, the pressure
is given by p, the absolute viscosity is η. (In the fluid mechanics
literature, the absolute viscosity [gm/cm s] is often denoted μ. We
use the notation of Ref. [9].) The pressure gradient, ∇p, accounts
for the work needed to maintain the flow against viscous losses
found on the right-hand side. For an incompressible fluid, Eq. (3)
is the equation of continuity.

To compute the rate of energy dissipation of a fluid described
by Eqs. (1)–(3), consider first the kinetic energy given by,

E = 1

2

∫
�

ρu2 dV , (4)

where u2 = uiui is the squared magnitude of the Eulerian velocity
field whose components in the three orthogonal coordinate direc-
tions are given by ui . To determine the energy dissipation dE/dt
from Eqs. (1) and (4) [12, pp. 580–581], [13], use Eq. (1) and take
the dot product with u, then integrate over a volume �. This gives

dE
dt

≡ 1

2

∫
�

ρ
Du2

Dt
dV +

∫
�

u · ∇p dV = η

∫
�

u · ∇2u dV . (5)

The pressure integration term
∫

u · ∇p dV = 0 is eliminated when
we consider the virtual work of the pressure over a differential
volume for an incompressible fluid (∇ · u = 0) when u · n = 0 or
the surface is at infinity [12, p. 580, Eqs. (4)–(6)]. We next use the
identity ∇ × (∇ × A) = ∇(∇ · A)−∇2 A applied to the velocity field
for an incompressible fluid (∇ · u = 0) obtaining for the integrand
in the last term on the right-hand side of Eq. (5) the expression
u · ∇2u = −u · (∇ × �). We then substitute this into Eq. (5) ob-
taining∫
�

1

2
ρ

Du2

Dt
dV = −η

∫
�

u · (∇ × �)dV . (6)

Next apply the identity ∇ · (A × B) = B · ∇ × A − A · (∇ × B) using
A → u and B → � so that u · (∇ ×�) = � · (∇ ×u)−∇ · (u ×�).
Using this in Eq. (6) yields in succession

1

2

∫
�

ρ
Du2

Dt
dV = −η

∫
�

(
� · (∇ × u) − ∇ · (u × �)

)
dV

= −η

∫
�

� 2 dV + η

∫
∂�

(u × �) · dS

= −η

∫
� 2 dV + η

∫
∂�

ζ · dS. (7)

Stokes’ theorem was used in the transition of the first to the sec-
ond line to convert the last volume integral into a surface integral.
Using the continuity equation, Dρ/Dt = (∂ρ/∂t + u · ∇ρ) = 0, on
the left-hand side, and the definition in Eq. (5), there is obtained
the Lamb–Stokes energy dissipation relation

dE
dt

= −η

∫
�

� 2 dV + η

∫
∂�

ζ · dS. (8)

The first term on the right-hand side shows the energy dissipa-
tion (rate) is proportional to the second moment of the vorticity
field. The second term gives the work of surface traction over the
boundary ∂� of the volume �. In these equations, we have not
introduced a factor of 1/2 in the definition of the vorticity. If we
had, the surface integral would have an extra factor of 2 inserted
[12, p. 581], [13]. The normals point outward. The absolute viscos-
ity has units [η] = E × T /L3. The quantity η

∫
�

� 2 dV then has
units of [η][� 2][dV ] = E × T /L3T −2 L3 = E/T .

4. Vortex fields

There are other possible avenues of energy dissipation in a
turbulent fluid flow that are not reflected in Eq. (8). These are
associated with vortex flow structures involving the swirl ζ and
vorticity � vectors leading to transverse waves that transport en-
ergy in a direction perpendicular to the (�, ζ )-planes. The vortex
field can have a wide range of wavelengths which couple to the
fluid leading to additional short range dissipation and long range
convection.

Further insight into the structure of vortex waves in fluid dy-
namics can be obtained by considering an analogy with the theory
of transverse waves in electromagnetism [14]. In an electromag-
netic field problem the energy dissipation, expressed as the pro-
duction of Joule heat, is given by the time derivative of the integral
I = 1

2

∫
�

1
4π (E2 + B2)dV . (See [15, p. 79].) Here E is the magnitude
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of the electric field and B is the magnitude of the magnetic induc-
tion field. In electromagnetics the integral I is proportional to the
time component of the Maxwell stress-energy tensor. The viscos-
ity coefficient η converts the analogous integral in Eq. (8) to an
energy dissipation rate without requiring differentiation. Here, the
B-field is analogous to the vorticity � and the E-field is analogous
to the swirl field ζ . Thus, we would expect the Lamb–Stokes dissi-
pation relation, Eq. (8), in order to include a vortex field, to have
the term λ2ζ 2 = λ2(u × �)2 contributing to the total dissipation.
In the case of a fluid, the coupling of the transverse waves to the
fluid momentum hinders the propagation of the waves, so such a
wave is likely to be short ranged, i.e., evanescent, unless energy is
continually supplied to sustain the vortex.

We now consider consequences of combining the vortex field
{�,ζ } and the vorticity � originating in the Navier–Stokes equa-
tions. The vortex wave system consists of both standing, evanes-
cent, and travelling vortex waves. The presence of vortex waves
alters the balance of dissipation in a region as the vortex energy–
momentum can enter or leave a region or be created in a region.
Since the vorticity satisfies a diffusion equation, as can be seen by
taking the curl of Eq. (1), the vortex waves, have a diffusive char-
acter as well as a propagating component. The vortex field con-
tributes an energy density − η

2 (� 2 +λ2ζ 2) to the total dissipation.
Thus, in a fluid dynamical system, the total energy dissipation rate
depends not only on −η

∫
�

� 2 dV but also upon −η
∫
�

λ2ζ 2 dV .
On the other hand, from the Navier–Stokes equation we have a
term −η

∫
�

� 2 dV , as shown above, that accounts for the total
Navier–Stokes dissipation when the vortex waves are not consid-
ered part of the flow. The combination of viscous dissipation due
to the Navier–Stokes equation and the vortex dissipation can then
be analyzed by partitioning the total dissipation and rescaling λ

since η
2 � 2 + η

2 (� 2 + λ2ζ 2) = η(� 2 + 1
2 λ2ζ 2) ≡ η(� 2 + −λ2ζ 2),

where λ = √
2 −λ. This divides the dissipation into − η

2 � 2 from the
Navier–Stokes part and − η

2 (� 2 + λ2ζ 2) from the vortex part with

a total η(� 2 + −λ2ζ 2) as described by the generalized Lamb–Stokes
dissipation relation:

dE
dt

= −η

∫
�

(
� 2 + λ2ζ 2)dV + η

∫
∂�

ζ · dS. (9)

The generalization is to include the term λ2ζ 2 which is needed for
describing dissipation in flows having a vortex field generating he-
lical, transverse waves of various wavelengths. The coefficient λ is
a material parameter, specific to each fluid, having units [λ2] =
T 2

0/L2
0. These are the same units as 1/c2

m where cm is the maxi-
mum speed of propagation of a longitudinal or a transverse vortex
wave in a fluid medium (i.e., sound). The new term represents an
additional mechanism of dissipation given by λ2ζ 2 = λ2(u ×�)2—
we call this the λ-effect term. If energy dissipation is described by
relative slippage of fluid lamella, the parametrization of enhanced
energy dissipation in Eq. (9) is given by the λ-effect when the slip-
page includes transverse waves or rotation in addition to shear
slippage. The weighted sum of the terms −η

∫
�

(� 2 + λ2ζ 2)dV
and −η

∫
�
(� 2)dV is interpreted as the dissipation due to a vor-

tex wave field in addition to the background dissipation described
by the Navier–Stokes equations. By combining the vortex field with
the description of the flow based on the Navier–Stokes equations,
we can determine how the field changes the Navier–Stokes equa-
tions.

The added physics due to the vortex field can be further un-
derstood by examining the role of ζ ≈ u × � ≈ u × (∇ × u) as an
agent of momentum transfer in the Navier–Stokes equations. Let
us consider the Navier–Stokes equation’s convective derivative part
in Eq. (1):
ρ

(
∂u

∂t
+ u · ∇u

)
= · · · . (10)

Then, using the identity, 1
2 ∇u · u = (u · ∇)u + u × (∇ × u), and

setting ζ ≈ u × � , and � ≈ ∇ × u, it is found that the convective
derivative part can be written as

ρ
∂u

∂t
− ρζ + ρ∇

(
1

2
u2

)
= · · · . (11)

Since ζ ≈ u × � ≈ u × (∇ × u) appears on the left-hand side of
Eq. (11), both the total inertia and the λ-effect contain the “cen-
trifugal” term u × (∇ × u) that convects the flow especially in
curved geometries. Using Eq. (11) and adding a linear dependence
on the swirl vector ρ(sλcm − 1)ζ i accounting for the vortex field
to the balance of stress on the right-hand side that includes the
viscous stress term η

ρ ∇2ui and minus the pressure gradient, leads
to a modified Navier–Stokes equation in a form that displays the
physics involved:

∂ui

∂t
+ ∇ i

(
1

2
u2

)
≈ − 1

ρ
∇ i p + sλcmζ i + η

ρ
∇2ui . (12)

It is shown below that numerical factor s → 1. Eq. (12) can also be
written for direct comparison to Eq. (1) as

∂ui

∂t
+ u · ∇ui = − 1

ρ
∇ i p + (λcm − 1)ζ i + η

ρ
∇2ui . (13)

Returning to Eq. (12), we see that the term, sλcmζ i , is a combi-
nation of the vortex field and a term coming from the inertia of
the flow. The units of cm are the units of the speed of the trans-
verse waves. With the factor of cm the units of all terms in Eq. (12)
are [L/T 2]. While a linear dependence on ζ is the simplest as-
sumption to account for the additional stress due to the vortex
field, it can be derived from the full theory [16]. The swirl field or
λ-effect term λcmζ i is responsible for the centrifugal-inertial ef-
fects in the flow leading to secondary vortical flows, e.g., in helical
pipe flows [17] and other cases of curved stream tubes. The other
terms in Eq. (12) for time independent flow can be analyzed as fol-
lows. The term ∇ i( 1

2 u2) is the divergence of the so-called dynamic
head or dynamic pressure, the pressure term − 1

ρ ∇ i p contains the

driving pressure gradient, and the viscous term η
ρ ∇2ui acts to dif-

fuse the velocity components of the flow.
The “classical” limit as λ → 0 requires cm → ∞ in a way that

λcm → 1. This is similar to the limit of infinite speed of longi-
tudinal sound waves for the Navier–Stokes equations with zero
compressibility. This limit also implies that the factor s = 1 in
Eq. (12). We would not include a similar linear contribution of �
in Eq. (12) as this is already included in the dissipation as shown
in Eqs. (8). Here we see in Eq. (12) that the λ-effect modifies the
nonlinear convective term that appears in the total derivative of
Eq. (2) since λcmζ i

≈ λcmu × (∇ × u) so that the λ-effect affects all
scales of the flow.

According to Eq. (12), when we include the unified vortex field,
the λ-effect is always present. So, in geometries where the swirl
vector ζ is important, as in Eq. (12), it will change the flow, and
lead to quantitative changes to velocity profiles. When the λ-effect
reduces the u × (∇ × u) term of the fluid inertia, it delays the
development of turbulence in transitional flows. The λ-effect sup-
presses instabilities and small wavelength turbulence in the flow
leading to increased values of the critical Reynolds number. The
surprise is that Eq. (12) appears to be a Navier–Stokes equation,
but it describes a different balance of dissipative and inertial ef-
fects because λcm �= 1.

We can show how the diffusion and convection of vorticity is
modified by taking the curl of Eq. (12) using � ≈ ∇ ×u, ζ ≈ u ×�



D.F. Scofield, P. Huq / Physics Letters A 372 (2008) 4474–4477 4477
and the identity ∇ × (u × �) = (� · ∇)u − (u · ∇)� + u(∇ · �) −
�(∇ · u). There is obtained an equation for vorticity convection
and diffusion

∂� i

∂t
+ λcm(u · ∇� − � · ∇u) = η

ρ
∇2� i . (14)

The terms on the left of Eq. (14) give the convective derivative
of the vorticity. Thus the vorticity satisfies a convective diffusion
equation. This equation then shows that vorticity convection is
scaled by λcm and that vorticity is not conserved because of the
diffusional term (η/ρ)∇2� i . Thus, the vortex field {�,ζ } will be
changed by the λ-effect when it is self-consistently included into
the calculation of the flow. This implies that the swirl is similarly
affected as it is part of the unified vortex field.

The general vortex field theory of a compressible viscous
fluid [16] shows the vortex field {�,ζ } has a vector potential Aμ .
It is coupled self-consistently to the fluid flow through an in-
homogeneous wave equation with the fluid current as a source.
This shows that the unified vortex field exists since it is derivable
from the vector potential. The formulation of the general theory
is invariant under so-called acoustic Lorentz transformations, thus
satisfying the most basic physical requirements of causality in a
medium where the greatest speed of propagation of a disturbance
is the maximum speed of the transverse sound wave cm . This al-
lows one to show that there is a map (homeomorphism) between
electromagnetic field theory and the general vortex theory justify-
ing the analogy above. A fluid flow then consists of a Navier–Stokes
flow driven by unified vortex field excitation derived from a self-
consistent vector potential. Turbulent flows then contain a good
measure of vortex excitation.

Depending on the swirl vector ζ ≈ u × � , the λ-effect may
be small in many flow geometries but large in some particular
ones. Thus, there are natural geometries in which the λ-effect is
enhanced. These geometries are generally helical. But local stream
tubes with curved geometries also play a role in turbulence [2]. An
example of such a geometry occurs in a 3D helical pipe flow [18,
19]. White and Taylor’s measurements [5,6] of helical pipe flow
showed strongly enhanced energy dissipation involving the cre-
ation of secondary vortical flows [17], [20, p. 567]. The effects are
striking—in these measurements of helical pipe flow, the enhanced
dissipative loss, as measured in terms of head loss, is as large as
600% compared to head losses in straight pipe flow. The effect is
so pronounced that turbulent pipe flow in a straight pipe section
(with Reynolds numbers above 2300 but below about 5000) ap-
pears to “relaminarize” on entry to a helical pipe section [21–24].
This effect can be alternatively characterized as the development
of a non-chaotic turbulent (vortex) structure. Thus, the enhanced
dissipation due to the vortex field (λ-effect) in the Lamb–Stokes
dissipation relation and the scaling of the centrifugal effects in the
convection of inertia provide a physically appealing explanation of
the experimental results of White and Taylor and introduces a new
mechanism for describing the development of turbulent structures.
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