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Large regions of inhomogeneous mixing have been observed in industrial, bottom-sweeping impeller
crystallizers. To investigate this phenomenon, we conducted experiments on a one-tenth volume model of
this kind of mixing tank. Results are reported of Lagrangian marker particle (LMP) and microconductivity
measurements using the model mixing tank with impeller tip Reynolds numbers of 25,000. Surprising
structure is found in this high Reynolds number flow. Using the LMP trajectory data, we show the flow
consists of a narrow region of rapidly moving, upward spiralling flow at the tank perimeter. This flow
returns slowly through a vertical stack of tori and through a quiescent region centered on the impeller.
These tori are concentric with the impeller and exist at loci of regions of shear found adjacent to the
quiescent central region and the tank perimeter.
Conditional analysis of the microconductivity signals reveals that large concentration fluctuations occur in
the perimeter flow. In contrast, only small diffusive-like concentration fluctuations occur in the center of
the tank. This segregation of regions of rapid transport in the perimeter flow from regions of micromixing
in the quiescent region results in inhomogeneous mixing in the tank. The complexity of the flow is reflected
in the large dynamical dimension (≈ 24) of the flow obtained from the calculation of the Kolmogorov
entropy production rate. The return-time distribution was found to be composed of a superposition of
two log-normal distributions. Period doubling phenomenon was also found in these distributions.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Stirred tanks are commonly used in industry as chemical reactors
and crystallizers. These tanks are often called continuously stirred
tank reactors (CSTRs) or stirred tank reactors (STRs). The homogene-
ity ofmixing in these tanks is an important determinant of the quality
of products produced in them. Thus, there is a practical motiva-
tion to improve our understanding of mixing in these tank flows.
The motivation for the present study are observations by industrial
plant operators of inhomogeneous mixing in the stirred tanks em-
ployed in producing the silver halide (AgCl, AgBr) crystallites used in
the manufacture of photographic emulsions. These industrial crys-
tallizers use bottom-sweeping impellers so that the crystallites do
not accumulate on the bottom of the tank. The immediate problem
is to understand the incomplete mixing and variable precipitation
rates found in large volumes of the center of the tank. It was further

∗ Corresponding author.
E-mail address: huq@udel.edu (P. Huq).

0009-2509/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ces.2008.09.037

noticed that there were well-defined regions in the tank where the
reactant profiles differed markedly from other regions in the tank.
Our earlier studies on a tank with a Rushton impeller located at the
tank mid-height (Togatorop et al., 1994) showed no evidence of such
incomplete mixing. Thus, the macroscopic flow field of the Rushton
and the bottom-sweeping impeller differ significantly. This focused
attention on determining the flow field of the bottom-sweeping im-
peller arrangement. Relatively little is known about the flow field of
bottom-sweeping impellers. The experimental results reported here
for a 280 l tank with a bottom-sweeping impeller provided ample
evidence of inhomogeneous mixing in the center of the tank.

In applying theoretical and experimental methods in mixing fluid
flows, one is immediately confronted with a choice of using either
Eulerian field based approaches or Lagrangian marker particle (LMP)
based methods. This paper describes the combination of experimen-
tal and theoretical methods for characterizing turbulent mixing in
mixing tanks with bottom-sweeping impellers using flow follow-
ing LMP and more traditional multipoint Eulerian microconductivity
probe techniques.

Our experimental results illustrate the synergy of the LMP and
microconductivity approaches in the analysis of mixing. The results
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reported are for high Reynolds number flow (tip Reynolds number
approximately 25,000). We find that the structure of the flow field
with a bottom-sweeping impeller consists of an outer, large swirl
surrounding a central annulus around the impeller shaft. The inner
annular region does not mix well with the outer, main swirl flow.
Between the outer, large swirl and the inner annulus are shear flow
zones composed of stacks of small tori. The persistence of such struc-
tures in high Reynolds number flows is a significant characteristic
of the mixing tank with a bottom impeller. Such structures are not
usually detected by standard statistical averaging methods because
the averaging process itself smooths out the information of coherent
structures.

This paper is organized into five parts. Following this Introduc-
tion, we provide a brief background of relevant work on mixing in
tanks. Section 3 summarizes the theoretical methods that we have
found useful in characterizing the flows. The experimental method-
ology and results are discussed in Section 4. The final section pro-
vides a summary and conclusions.

2. Background

The idea of viscous subranges for scalar mixing in isotropic tur-
bulence was introduced in Batchelor (1959). This is applicable to
tank mixing problems as an approximation. It has been shown by
Bourne and Dell'ava (1987) that significant chemical reactions oc-
cur only when micro-mixing takes place (i.e., for length scales in the
viscous-convective and viscous-diffusive subranges). It is known that
the turbulent flow field is weaker (i.e., anisotropic and inhomoge-
neous) in certain regions of a tank. The practical problem is that the
geometry and boundaries of the vessels containing the flows of in-
terest are complicated leading to a structuring of the turbulent flow
in the tank.

Central to understanding turbulent mixing processes (macro- and
micro-mixing) is how fluid moves about in a tank as this determines
the efficacy of mixing. The large-scale (macro) flow which trans-
ports reactants and fluid parcels within the tank is determined by
the geometry of the tank and geometry and location of the impeller.
Micro-mixing which controls the rates of molecular mixing and re-
action depends on the magnitude of kinematic viscosity � and ki-
netic energy dissipation rate ETKE. Estimation of ETKE is not easy.
From their particle-image velocimetry (PIV) studies with a Rushton
impeller (Sharp and Adrian, 2001; Escudié and Liné, 2003) showed
the assumption of isotropy can lead to an over estimation of the true
dissipation rate. Secondly, reliance on spatially averaged values of
dissipation is insufficient as local values of dissipation govern many
processes. For a mixing tank powered by a Rushton impeller (Ducci
and Yianneskis, 2005) determined using laser Doppler anemometry
that local values of ETKE varied considerably with radial and verti-
cal distance away from the impeller. Similar studies have yet to be
undertaken for other configurations such as the bottom-sweeping
impeller.

To investigatemacro- andmicro-mixing for the bottom-sweeping
impeller we employ two complementary approaches. The LMP
method allows the determination of the large-scale structure, while
micro-conductivity probes yields information on small-scale mixing.
Conductivity probes are routinely used in mixing tank studies. For
example, Reilly and Britter (1985) determined from their conduc-
tivity measurements that there is no effect of the Reynolds number
on the dimensionless mixing time N × t where N is the rotation
speed of the impeller and t is the measurement time. There are few
reported studies with LMP data for high Reynolds number flow.

Numerical (Aref, 1986, 1988) and experimental (Ottino et al.,
1988) studies of Lagrangian mixing have been reported for two-
dimensional systems at low Reynolds number. The term chaotic ad-
vection has been applied to the motion of particles in fluid mixing

(Aref, 1984, 1990). Mixing and the kinematics of chaotic advection,
from amodern perspective, is typically based on analysis of multiple,
simultaneously present, marker particles. In contrast, at this stage of
our work, we prefer to use one particle and invoke the hypothesis of
“ergodicity” (Eckman and Ruelle, 1985) to simplify the experiment.
This hypothesis is equivalent to the assertion that the information
gained from measuring a single particle for a long time in a bounded
vessel is the same as that obtained frommeasuringmany particles si-
multaneously for a short time interval. The ergodic hypothesis allows
us to use the single particle LMP data to map out the flow (Dombre
et al., 1986). The trajectory of the LMP yields a chaotic position and
velocity signal. We utilize tools from the emerging science of non-
linear dynamical analysis to understand this position and velocity
signal. A useful review of the analysis of chaotic signal data is by
Abarbanel et al. (1993) and Abarbanel (1996). Analysis of signals in
terms of the dimension of the underlying flow manifold was studied
by Broomhead and King (1986) and Broomhead and Jones (1989).
The approaches in Wittmer (1996), Gilmore (1998), Letellier et al.
(1995) and Letellier and Aguirre (2002) are close in spirit to ours.

3. Theoretical methods

In this section we outline the theoretical methods employed
to understand mixing in a tank with a bottom-sweeping impeller.
Results from applying these methods are given in the following
section. The detailed statistical results we are able to obtain provide
new perspectives from which to view the structure of high Reynolds
number turbulent fluid flows in CSTRs. The statistical measures we
describe include Kolmogorov entropy production rate calculations,
mixing time distribution, return-time distribution, and probability
measures. The basis of many of our calculations relies on the em-
bedding of the LMP flow data into higher than three-dimensional
spaces. The embedding allows determination of the complexity or
dimensionality of the flow. Thus, we first describe this embedding
process, then the statistical methods used.

3.1. Embedding the experimental data

The dimension of the embedding space is a measure of the com-
plexity of the flow. It can be shown that the problem of obtaining
the structure of the flow involves a multi-dimensional space and this
space can be obtained by embedding the sampled-path data using
the Whitney embedding theorem. The practical implementation of
the Whitney embedding can be approached using the Takens–Mañé
theorem (Mañé, 1981; Takens, 1980).

The Takens–Mañé theorem shows, given a LMP trajectory, x(t),
time (t)-sampled data with sampling interval �, that one can form
the sequence of mbed-dimensional position vectors

x1 = (x(t), x(t − �), . . . , x(t − (mbed − 1)�))

x2 = (x(t − �), x(t − 2�), . . . , x(t − (mbed − 0)�))
... =

...
... (1)

and this forms a 3mbed dimensional Whitney embedding of the orig-
inal sampled data set. The dimension mbed is called the number of
degrees of freedom. It gives the number of three-dimensional nonlin-
ear dynamical equations required to locally describe the dynamical
system. We have gone from a three-dimensional space to one where
each point xi has 3mbed components. This is called the method of
delays. The delay intervals are 0�, 1�, . . . , (mbed − 1)�. Thus, once the
embedding dimension mbed is chosen large enough and an appro-
priate delay interval found, the physical properties of the equivalent
dynamical system generating the path can be extracted using the
time delay coordinates. The embedding dimension is also calculable
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using statistical methods involving the Kolmogorov entropy as we
describe next.

3.2. Kolmogorov entropy

The Kolmogorov entropy production rate K̇ provides a measure
of the mixing in the tank. It provides a measure of the temporal dis-
order, i.e., dynamical randomness, in both deterministic dynamical
systems and stochastic processes (Andrieux and Gaspard, 2007). The
Kolmogorov entropy production rate itself has the following prop-
erties:

K̇ = zero: an ordered system (laminar),

K̇ = finite: transitional (chaotic),

K̇ = infinite: totally random (truly turbulent). (2)

We note that a quantity, K̇2, provides a lower bound to the Kol-
mogorov entropy production rate (Grassberger and Proccacia, 1983):

0� K̇2� K̇ (3)

and satisfies the same conditions as K̇. The quantity K̇2 has been
shown to be calculable (as � → 0) as follows (Grassberger and
Proccacia, 1983). First define the correlation integral Cn(�) as the limit
as N → ∞ of the ratio

Cn(N, �) = total number of pairs at or within radius �
largest number of mathematically possible pairs

=
(number of pairs (i, j) with ‖Xin − Xjn‖3n < �)

N(N − 1)/2
. (4)

That is

Cn(�) = lim
N→∞

Cn(N, �). (5)

Then define

K̇2,n(�) = 1
�
ln

Cn(�)
Cn+1(�)

. (6)

Here Cn(�) has been shown to behave as (Grassberger and
Proccacia, 1983)

Cn(�) ≈ lim
�→0

�n exp(−n�K̇2). (7)

Here the distance or norm between the pairs of points Xi and
Xj in a 3n-dimensional space is denoted by the real quantity ‖Xin −
Xjn‖3n. This norm is the distance between two delay path vectorsXi=
(Xi,Xi+1, . . . ,Xi+n−1) and Xj=(Xj, . . . ,Xj+n−1). The number 3n is thus
an embedding dimension and n is the number of degrees of freedom.
Here N is the number of three-dimensional vectors in the record
considered from the experimental data set. The quantity 3n serves
as an estimate of the embedding dimension. This has become the
standard practice in the analysis of observed chaotic data (Abarbanel
et al., 1993; Abarbanel, 1996).

The Kolmogorov entropy production rate measures the average
dispersal of particles from any elementary volume in a closed region
of flow. It gives the temporal average rate of entropy production
or information loss at a point. It complements the insight gained
from the return-time distribution described below. The results can
be displayed to indicate the positions in a tank where the entropy
production is least, etc. The quantity K̇2, in the limit of large time
tn = n�, can thus be interpreted as a “mixing time constant”.

3.3. Mixing time

A practical definition of good mixing is that solutions added at
a point in a tank be rapidly and thoroughly dispersed throughout.
Thus, there are two aspects of the problem: thoroughness of dispersal
and rapidity. There is a third aspect, namely, that in a tank these
properties can depend on position—these properties are Eulerian
field quantities. The thoroughness aspect can be addressed by using
concepts related to production of disorder.

Turbulent dispersal can be viewed as a stochastic process. How-
ever, it is not random and it is recognized that coherent structures
play a significant role in the dispersal of particles. Our experimen-
tal results show that coherent structures in the form of tori indeed
do affect the dispersal process. One can develop a pragmatic anal-
ysis of the thoroughness of dispersal property along the following
lines. Place a number Q of particles into an initial volume V0 of a
stirred tank. Following the group of particles, one would find after
a time interval �t that the particles would occupy a (larger) vol-
ume V1. The probability that one particle would be observed in a
volume corresponding to the original volume V0 would be (V0/V1).
The (small) probability that all Q particles would be observed in V0
is then (V0/V1)

Q . This leads to the definition of a mixing entropy
change �S as can be seen in the following. As the particles' average
distance increases, there is a change in the volume in going from the
initial volume V0 to the expanded volume V1. This leads to a change
in entropy that is proportional to the logarithm of the fractional vol-
ume change

�S = Sfinal − Sinitial = QkB ln
(
V1
V0

)
= −QkB ln

(
V0
V1

)
, (8)

where kB is Boltzmann's constant and Q is the number of particles
in the volume as stated above. This is a measure of thoroughness:
best mixing occurs when �S is maximized. Clearly if a set of added
particles is merely convected by the flow, no mixing has occurred,
the flow has merely stirred the particles by moving them from one
point to another and V/V0 = 1, so �S = 0.

In mixing, one is not just interested in the final increase in en-
tropy as just discussed but is also interested in the rate or rapidity of
entropy production. Thus, one wants to know how fast �S increases
from its initial zero value to its maximum value. That is, one needs a
measure of the time rate of change of the dispersal of a group of par-
ticles in the tank. This more detailed computation is related to the
correlation integral, Cn(�), given in Eq. (4) above. The quantity Cn(�)
can be directly computed as it is related to the number of particles
in an n-dimensional space that are closer than a small distance �.
Clearly, the results depend upon N and �. To avoid this dependence
one would like to take the limit as N → ∞ and � → 0. That is, one
would like the dispersal entropy in terms of a continuous distribution
of added particles and the resolution � to be as tight as possible. The
time rate of change of lnCn(N, �), i.e., Kn=(lnCn(N, �)−lnCn+1(N, �))/�,
where � is the sampling rate (averaged over the fluctuations), gives
an entropy production rate. The time constant of entropy produc-
tion is a measure of the mixing time. This (Kolmogorov) entropy
production rate depends on the location in the tank, so it is a field
quantity.

3.4. Return-time distribution

There is yet another aspect of mixing that is important. It is
the time required for a particle leaving a high reactant concentra-
tion region to return to it. This is important because here the reac-
tion rates depend on position in a tank. A crystallizer accentuates
this because there are large concentration gradients maintained in a
tank due to the high concentration of reactants provided at the feed
jets.
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In general, the time it takes for particles initially in a source re-
gion to find their way to a destination region defines a transit time.
When the source and destination are in the same region, there is
defined a return-time. The distribution of these return-times can be
displayed in a histogram called a return-time (frequency) distribu-
tion. The abscissa axis of the plot of the distribution of return-times
is proportional to the logarithm of the return-time—a consequence
of fluctuating, globally bounded, locally exponential divergent LMP
paths (Aitchison, 1966). Given sufficient LMP data, a return-time dis-
tribution can be computed.

3.5. Frequency and probability measures

Because of the extensive LMP path data set available for analysis,
other measures can be computed. For example, the frequency distri-
bution of finding the LMP in a small volume and joint probability of
two particles meeting at a location can be computed. Such calcula-
tions can be extended to the joint probability distributions of three
or more particles as well. We can also compute Poincaré sections of
the turbulent flow. These results can be used in the placement of
feed jets and the design of automatic control strategies to optimize
yields.

4. Experiment

4.1. Experimental setup

Experiments were performed on the single bottom-sweeping im-
peller driven flow in a cylindrical tank diagrammed in Fig. 1. That
figure depicts a tank of height 102 and 60 cm in diameter (approxi-
mately 280 l in volume). Located at the bottom of the tank, sweeping
the bottom, is a four sided, flat blade impeller. The impeller is pow-
ered by a constant power pneumatic motor to generate a flow with
constant energy dissipation. The bottom-sweeping impeller rotates
at 50 rpm. Reynolds numbers at the blade tip exceeds 25, 000, so the
flow is fully turbulent. The tank is surrounded by a rectangular outer
tank whose purpose is to provide distortion free optics for particle
following. This is implemented by filling the gap between the tank
and the outer tank with fresh water at the same temperature as the
inner tank.

The choice of the diameter of the LMP is dictated by the need to
track a marker particle over a viewing window about 1 by 1m in
size. This meant that we could not use particles of order 10�m di-
ameter that are typically used for LDA and PIV measurements. After
experimenting with many other diameters we settled on a LMP of
diameter 0.4 cm to facilitate practical simultaneous tracking of the
LMP on the three video cameras that were used to record the ex-
periment. The LMP consisted of a 0.4 cm diameter neutrally buoyant
mixture of carbon black and bee's wax. The value of the Stokes num-
ber (St = 2a2U/9�L) is less than one. Here a is the LMP radius, L is
a characteristic length scale, taken to be the radius of the tank, U, a
characteristic velocity of 30/cms−1, and � the kinematic viscosity of
water, 0.01 cm2/s. Corrections to the trajectory of LMP due to iner-
tia of the neutrally buoyant particle been shown to be negligible in
this range of Stokes number (Maxey and Riley, 1983; Maxey, 1988;
McLaughlin, 1988). Corroborating this is the fact that dye streaks in
the vicinity of an LMP showed no measurable differences from the
trajectory of the LMP itself.

Three orthogonally arranged (NSTC) video cameras were used
to synchronously track the LMP from the x,- y- and z-planes. The
three views permit tracking the LMP from at least two cameras
at all times, even in the presence of the opaque impeller shaft.
LMP position time series data were collected for up to 100h. This
duration is sufficient to provide binning with more than 50 sam-
ples in each bin. This allows resolution of period doubling in the

distribution of return-times. A computer and frame grabber allowed
direct calculation of the position of the particle in a two-dimensional
view. The spatial resolution of the cameras is sufficient to resolve
0.1 cm×0.1 cm square pixels in the viewing plane. This is more than
sufficient to resolve the LMP. Frames were collected at a 66Hz rate
and the trajectories were cubic spline fit through five data points
to accurately place the particle position. The LMP particle paths are
corrected for parallax and Snell's Law.

The microconductivity probes were placed at a distance of 30 cm
from the bottom, and at 10 and 20 cm from the wall of the cylindri-
cal tank, i.e., 10 and 20 cm, respectively, from the axis of the impeller
shaft. The experiments with themicroconductivity apparatus involve
introducing a liter of brine, of density 1100kg/l, at a location on the
perimeter of the cylindrical tank opposite the conductivity probes.
Each experimental run was conducted three times to verify repeata-
bility. The spatial resolution of the conductivity probe is of order
0.01 cm and the temporal resolution is 100Hz. This is sufficient to
resolve the spectrum of scalar fluctuations to the Kolmogorov scale.

4.2. Experimental results

The schematic of the flow driven by the bottom-sweeping im-
peller is shown in Fig. 1b. The flow consists of an outer or perimeter
swirl enveloping a stack of nested tori. This outer swirl constitutes
the main toroidal flow. This rapidly swirling flow spirals upward in a
narrow region along the vertical walls of the tank. Its downward re-
turn covers a larger horizontal cross-sectional area and moves more
slowly. Between the outer spiral flow and the center of the tank are
vertically stacked tori or coherent structures which are circular in
plan and concentric with the impeller. The main toroidal flow en-
velopes a (secondary) set of two concentric, nested stacks of tori. A
schematic emphasizing the relative sizes of the main toroidal flow
and the stacked, nested toroidal flow is given in Fig. 1c. Even with a
high Reynolds number, it is seen that there is considerable structure
to the flow.

The evolution of trajectories of particles emanating from a small
volume can be simulated by collecting LMP paths that flow through
a small volume. Such a simulation is shown in Fig. 2. The sequence
of figures (from the top left to the bottom right) shows the growth of
the paths of the particles in time. In these figures a general swirling
flow in a clockwise direction viewed from the top is evident.

Fig. 3a shows the LMP paths seen from the top and Fig. 3b shows
the path seen from the side. This top view shows the projection
of both upward moving part of the LMP trajectory and downward
moving parts of the trajectory. There is an absence of paths in the
center of the tank. The side view, Fig. 3b, shows that the impeller
pumps fluid from the bottom of the tank forcing the fluid to spiral
upwards in a narrow region along the walls toward the top.

Fig. 4 shows the radial distribution of the Eulerian velocity com-
ponents at a location approximately halfway up the tank (z ≈ 0) from
the bottom. The figure gives averaged values of vz,v�, and vr . No-
tice first that none of the velocity components deviate measurably
from zero in the central region for radii in the range 0� r�7.6 cm;
this is called the “dead zone” because of this small velocity field.
For all velocity components there is a region of large variability in
the range 7.6� r�11.4 cm: this is a region of shear flow. Values of
vertical velocity vz are negative (i.e., downwelling flow) between
12� r�20.5 cm. For r >21 cm toward the outer wall of the tank, val-
ues of vz are positive and large due to centrifugally driven upwelling:
thus the width of the region of centrifugally driven upwelling is ap-
proximately 9 cm. The magnitudes of radial velocity vr are small ev-
erywhere, except in the shear zones in the range 7.6� r�11.4 cm
and 19.5� r�22 cm.

The presence of positive and negative values of vr is consistent
with the presence of toroidal flow with the tori concentric with the



280 D.F. Scofield, P. Huq / Chemical Engineering Science 64 (2009) 276 -- 287

Fig. 1. Schematic of CSTR tank. (a) The tank dimensions holding 280 l. A flat blade (90◦ , bottom-sweeping) impeller rotating at 50 rpm is used to generate the flow. (b)
Overall schematic emphasizing the structure of the flow in the tank. Shown along the tank perimeter is a thin rapidly moving upward swirl region of fluid. At the center
of the tank, surrounding the impeller, is a slowly moving downward swirl which we call the dead zone. Between these two regions is a stack of toroidal flow structures.
(c) Detailed schematic of the tank flow with a non-dimensional scale r/R. Here R is the radius of the tank. Shown are the outer upwelling sheath at the tank perimeter. At
the center is a slowly descending flow that we call the dead zone. Between these two flow regions are two vertical stacks of tori concentric with the impeller shaft.

impeller shaft. The largest values of tangential velocities v� occur
near the shear zones and decrease to small values elsewhere. The
velocity field in the shear zone does not have averages that are sta-
tionary. This is the result of intermittency of the flow field involving
the secondary tori. This aperiodic flow represents a zone of unsta-
ble flow between the so-called dead zone of the tank and the up-
welling zone defined by positive z-velocities at the tank perimeter.
Note that such non-stationary flows require embedding of the flow
into higher dimensional manifolds in order to account for the higher
order dynamics observed.

4.3. Kolmogorov entropy and mixing time

A standard metric for evaluating the strength of turbulence is the
“turbulent intensity”. For instance, we can evaluate this for the tank
by using the ratio v′/v̄� of the rms velocity fluctuation, v′, divided by
themean radial velocity, v̄�. As discussed previously, the aperiodicity

of the flow in the region of shear (see Fig. 4) makes it difficult to
estimate stationary values for these quantities. An alternative metric
to the “turbulent intensity” is related to the Kolmogorov entropy
production rate.

The Kolmogorov entropy production rate is a field quantity that
can be computed throughout the tank to determine regions of good
and poor mixing. However, these computations are very computa-
tionally intensive. One can more easily compute a closely related
metric which allows an independent estimate of the (embedding)
dimension of the turbulent flow. This is called the correlation inte-
gral, Cn(�), and it is related to a quantity, K̇2, which provides a lower
bound to the Kolmogorov entropy production rate, i.e., 0� K̇2� K̇
(Grassberger and Proccacia, 1983). The fundamental idea is that the
flow advances in time in a way that “remembers” its past. Thus
the flow at any instant is correlated in a sense with its past. This
correlation is computed as a correlation integral of the path with
itself delayed for different intervals. As the length of a LMP path
increases, the correlation integral limit is given by (Grassberger and
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Fig. 2. Dispersion of particle paths in CSTR issuing from a small volume (dye streak simulation). This plot is obtained by collecting paths threading through a small volume,
then displaying all of them for increasing time intervals.

Proccacia, 1983)

lim
N→∞

Cn(N, �) = Cn(�) ≈ �n exp(−n�K̇2), (9)

where n is called the correlation exponent. The small quantity � is a
measure of the elemental discretization of the volume. The relation
of the limit to the exponential form shows that the correlation rate
lnCn(�) is logarithmically related to ln �n=n ln �. The quantity 3n also
serves as an estimate of the Whitney embedding dimension.

The Kolmogorov entropy production rate can be computed as an
Eulerian field quantity. This can be done by dividing the tank into
tetrahedral elements and computing Eq. (4) by choosing a particular
cell. This requires restricting the summation over i and j in Eq. (4)
to paths emanating from that particular cell, the K̇2 computed is the
mixing time constant from that cell. The 280 l tank is tessellated into
about 6 × 105 tetrahedra. The Kolmogorov entropy production rate
is then computed by finding the particle fluxes through the various
tetrahedra then computing the information loss as particles from an
elementary volume are dispersed. The correlation integral Cn(�) is
then computed for increasing time intervals tn=nt. Amixing constant
t−1
M = K̇2 can then be obtained (e.g., defined as the limit N → ∞
of K̇2).

The value of the Kolmogorov entropy in terms of Cn(�) is finite
as shown in the results of Fig. 5. Examination of Fig. 5 shows that
the log2 Cn(�) vs. log2� curves get closer and closer together as n in-
creases, piling up in the limit at a value of n slightly above the range
n = 24–30. This number is related to the embedding dimension de-
scribed above. The large number reflects the complexity of the flow.
In contrast, the Kolmogorov entropy production rate in terms of Cn(�)
inside the dead zone using LMP data was too small to be computed
by the path and box-counting algorithm employed, because of the
lack of paths in that region.

4.4. Return-time distributions

Return-time distributions have been used in the chemical indus-
try as a measure of mixing. That is, the measurement of the time
interval for return of the LMP to a given region provides a metric
for the strength of circulation in the tank. The longer the time in-
terval, the weaker the circulation. Fig. 6 shows a return-time distri-
butions measured at a horizontal planar Poincaré-section situated
20 cm above the impeller. The distribution is obtained by histogram-
ming the measured return-times. The vertical axis is the normal-
ized number of times the LMP returns in a certain log-time interval
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Fig. 3. LMP trajectories in the CSTR. (a) Top view. (b) Side perspective. The top
view shows race-track like trajectory for both up-welling and down-welling flow.
There is an absence of trajectories in the vicinity of the impeller comprising the
dead zone. The side perspective shows the main swirl.

labeled along the horizontal axis. A superposition of two log-normal
distributions are evident in Fig. 6. The left-hand distribution com-
prises short return-times between 0 and 10 s. whereas the right-
hand distribution has a longer return-times up to 80 s. The left-hand
log-normal distribution can be ascribed to return paths that quickly
return to the Poincaré-section after moving through the impeller re-
gion, short-circuiting a path up along the perimeter wall and then
back down through the stack of tori (Fig. 1c). When the trajectory is
through a stack of tori, the LMP moves relatively slowly: such trajec-
tories yield longer return times found in the right-hand distribution.

The nonlinear interaction of the impeller and the flow is impor-
tant and gives rise to sub-multiples of the impeller frequency seen

Fig. 4. Computed average Eulerian velocities at mid-height of tank (z=0). Along the
vertical axes are the radial velocity vr , the vertical velocity, vz , and the azimuthal
velocity, v� , in units of meter per second (m/s). Along the horizontal axis is the radius
in units of cm. Near the center of the tank, persistent non-stationary fluctuations
in the velocities occur.

Fig. 5. Change of the lower bound, K̇2, of the Kolmogorov entropy production rate
with dimension n. The vertical axis is for the Kolmogorov entropy production rate
K̇2 ≈ log2Cn . Here Cn is the correlation integral. The horizontal axis is log2�V a
logarithmic measure of the box size used in defining the path discretization. The
computation uses paths measured at a location 25 cm above the impeller and at a
radius of 25 cm from the impeller shaft. This is in the upward swirl region near the
perimeter of the tank. The embedding dimension n as shown can be estimated by
the pile-up of the traces on the right-hand side of the plot starting around n ≈ 24.

in the return-time distribution. Period doubling or frequency sub-
harmonics are identified as minor peaks (1, 2, 3, 4) in Fig. 6. The
peaks have an amplitude that is of the order of 15% greater than
background distribution. This is large enough to clearly distinguish
them from that distribution. These minor peaks are separated by a
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Fig. 6. Return-time distribution (normalized) measured at a horizontal section 20 cm above the Impeller. This return-time is defined as the time interval from exiting a
horizontal plane just above the impeller to its return to that plane (Poincaré section). Notice that the sum of the two different (dashed) distributions provide a good fit to
the whole histogrammed data.

constant displacement along the logarithmic, horizontal axis. When
such a constant displacement occurs along a logarithmic axis, �, it
indicates a multiplicative factor (g) relationship between successive
values of � of the form �n+1 = g�n = gn�0. The factor g = 2 indicates
period � doubling.

Fig. 7 graphs displays a period doubling relationship �n+1 = 2�n =
2n�0 as a straight line for data from the first (1) series. The straight
line in Fig. 7 acts as a reflection line having a multiplication factor of
(about) two for finding the (n + 1)th iterate from the nth. The three
other series (2, 3, 4) follow the same pattern and are not shown for
brevity. The data for the all four cases shows that the minor peaks
1–4 satisfy the same period doubling relation to a high level of accu-
racy. The intercept at the origin, �0 = 0.30 s, is determined from the
data as the first iteration factor. This is the period of the successive
passes of one of the four impeller blades past a point on the bottom
of the tank. The interval corresponding to the impeller rotation rate
is labeled “impeller” and lies approximately in the center of the log
time axis of Fig. 6. Because of the presence of these period doubling
sequences, a picture emerges of flow in which the circulation of the
outer swirling (toroidal) flow adjacent to the walls of the tank is
synchronized with the impeller motion and the rotation of the ver-
tical stack of tori. Period doubling is often found in chaotic systems
depending on variation of a system parameter (Eckman and Ruelle,
1985) such as a Reynolds number in a model of fluid flow. In the
present case the period doubling occurs without external variation
of such a parameter.

4.5. Frequency and probability measures

Phase plane plots are useful in exploring interrelationships
between a variable and its derivative. By choosing a cylindrical co-
ordinate system centered at the middle of the flow, a surprisingly

Fig. 7. Return-time, period doubling relationships. Shown are data for the first of
four such sequences. The double line is the least squares fit of the experimental
data satisfying �n+1 = 1.966583�n − 0.041255. The plot shows the relation between
successive return-times in the sequence �n+1/�n ≈ 2. The outer dotted lines give a
two standard deviation envelope. The squares are from the experimental data.

simple description of the flow and is obtained by plotting the
Poincaré section for the return to a vertical plane through the im-
peller shaft. Here we first present results for frequency distributions
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Fig. 8. Experimentally determined toroidal flow structure from Poincaré phase plot.
(a) The azimuthal angle � ∈ (−�,�) vs. its rate of change �̇ is plotted. Here the
angle variables are the azimuthal angles from the center point of a vertical Poincaré
plane aligned through the impeller shaft. The plot of this experimental data shows a
cross-section of a torus embedded in a vertical disk. The cluster of dots outside the
elliptical holes form a wing-like pattern that are the result of higher dimensional
structure in the flow. In the region of the impeller (�= −�/2) there are dots within
the torus caused by impeller created turbulence.

of the LMP passing through planes defined first in the space of the
azimuthal angle, � ∈ (−�,�), along the vertical axis and its rate of
change, �̇. In the resulting plots, the density of data points plot-
ted provides statistical information as to the frequency of pairs of
values (�, �̇).

In Fig. 8 we plot the values of the azimuthal angle � ∈ (−�,�)
along the vertical axis vs. against its rate of change, �̇, along the
horizontal axis. In this figure the angle �= −�, occurs at the bottom
of the tank. The top of the flow is represented at the angle of � = �:
note there is more dispersion of the dots into the center of the
toroid cross-section at � = −�/2. This is the region of the impeller.
Furthermore, there can be discerned a distribution of dots above
and below the toroidal cross-section centered at � = ±�/2. These
indicate deviations from the main toroidal flow. Examining Fig. 8
more carefully, it is noticed there are small “wings” consisting of
scattered dots about � = ±�/2 in the plotted data. These wings are
created by the secondary flow consisting of the stack of tori within
the larger, perimeter toroidal flow described above.

These experimental results can be compared to those for typ-
ical dynamical systems describing motion of a point on a two-
dimensional or higher dimensional mathematical torus. A flow on a
two-dimensional toroidal surface can be periodic or quasi-periodic.
For a periodic flow, the phase plane portrait is a pattern of separate
dots arranged on two circles. The simple mathematical toroidal flow,
plotted similarly, would only give two circles centered at �=±�/2 if
plotted in the format of Fig. 8. In the two-dimensional quasi-periodic
case, these dots merge, filling out the circular form. The next step in
complexity beyond two-dimensional quasi-periodic flow requires
adding a third dimension. Such a flow would be described dynami-
cally as flow on a solid three-dimensional torus. Higher dimensional
toroidal flow leads to additional dots and wing-like structures as

Fig. 9. Frequency of finding the LMP at a point in the tank. (a) Vertical position.
Data measured at a vertical cross-section centered through the impeller shaft. (b)
Dog-bowl shaped distribution for a horizontal x–y plane at a height 20 cm above
impeller.

found in Fig. 8. Thus, the experimental flow fluid flow whose results
are reported here is even more complex than a dynamical system
on a three-dimensional torus. Such a higher dimensional description
is consistent with the toroidal route to chaos of Ruelle and Taken
(1971a, b), Newhouse et al. (1978), Ruelle (1979) and Takens (1980).
The higher than three dimensionality is also consistent with the re-
sults of the Kolmogorov entropy production rate which showed an
approximate embedding dimension of 24, see Fig. 5. Also important
in this figure is the fact that the toroidal cross-section is filled in.
(The torus becomes thickened.) This is evidence for the LMP jump-
ing between members of the vertical stack of tori. It is also noticed
for most values of � that there are many values of �̇ near zero. This
arises from the fact that on the Poincaré section many returns do so
with nearly zero up and down angular speed. These results are for
high Reynolds numbers flow; they, nonetheless, provide evidence
of unexpected coherence that might be expected only in simple
dynamical systems.

We now present results for the frequency distribution p(x, y, z)
that the LMP has visited a given volume. The distribution p(z) =∫
p(x, y, z) dxdy for a vertical cross-section through the central shaft

is displayed in Fig. 9a. Fig. 9b shows the (normalized) frequency den-
sity p(x, y, z) at an x–y plane Poincaré section located at z ≈ 20 cm
above the bottom-sweeping impeller. The main feature of Fig. 9a
and (b) is that the return rate (normalized) is not flat or uniform.
This occurs because the flow is highly structured: consisting of the
perimeter swirl and the stack of tori. The effect of non-uniformity
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can be understood by first imagining the opposite extreme of LMP
trajectories leading to a flat distribution. Consider a circular orbit,
concentric to the impeller shaft in a plane perpendicular to the im-
peller shaft. Then any increase in velocity of the LMP along the or-
bit leads to a decrease in the time spent completing the orbit. This
decrease, however, is exactly compensated by an increase in the
frequency of return. A system of such orbits would yield a flat distri-
bution no matter the speed. However, there is more to the story. The
data of Fig. 9a show that the LMP is trapped most frequently near
the impeller. That is, different regions of the flow trap the LMP for
different lengths of time. An essential characteristic of the flow in
the tank is that the flow paths are complicated. The tank flow system
includes the perimeter flow and the stack of interior tori. The LMP
can also jump from one torus to another. The different paths and
their return rates provide a measure of the variation of the trapping
ability of the tori in the tank flow. The same trapping phenomenon
is observed in Fig. 9b, where it is seen that the tori system (perime-
ter swirl plus stack of smaller interior tori) attracts the LMP most of
the time yielding an inhomogeneous distribution. Thus, the (normal-
ized) return rate data reflect the relative strength with which differ-
ent parts of the tori system attract the LMP. As previously noted in
the experimental setup section, the LMP data set is as long as 100h,
sufficient to yield a flat average if there were one. Thus, the mea-
sured, non-uniform return rate distributions reflects the complexity
and structure of the flow field.

At the left-hand side of Fig. 9a, the sharp rise of frequency in
the region (−38.1�z� − 25.4 cm) is caused by the curvature of the
bottom contour of the tank and the centrifugal pumping from the
impeller. Prominent is the high frequency peak near z ≈ −28 cm
due to the recirculation near the impeller. Aside from this peak, the
general trend is a decrease in frequency with minor peaks at z ≈ −3,
z ≈ −14, z ≈ +9 and z ≈ +14 cm. This increased frequency of these
local peaks can be associated with momentary trapping of the LMP
in secondary flow tori. In Fig. 9b, the small values in the middle
of the dog-bowl shaped distribution reflect the small frequency of
finding the LMP in the central region of the tank. The distribution of
the data on the plot indicate that the LMP passes more frequently
through points near the wall of the tank, away from the center. This
results in high frequency values near the wall giving a “dog bowl”
shaped frequency distribution.

When the LMP is placed in the dead zone, it moves slowly in a
spiral fashion towards the impeller. Indeed, it spends a long time in
that region. However, very rarely does it enter the dead zone of its
own accord. This is because the slowly moving dead zone is a region
of higher relative pressure compared to the rapidly moving flow
surrounding it. Thus, the LMP is effectively precluded from entering
the dead zone from the outside.

The frequency distributions just described can be used in form-
ing a SRB measure (Ruelle, 1979; Sinai, 1972a, b), S = −p ln p which
is proportional to an entropy measure. This involves a simple trans-
formation of the p(x, y, z) data. In fact one can compute such a SRB
measure in a plane perpendicular to the impeller shaft. The result
is a dog-bowl shape similar to that shown in Fig. 9b which is not
shown for brevity.

4.6. Eulerian microconductivity results

Visual observation of the evolution of dye streaks created by
adding dye in the bottom perimeter tank gave streaks that filled
the outer swirl and the adjacent toroidal sections before eventually
filling in the central zone. To examine the characteristics of mix-
ing at the center and perimeter of the tank and also the connec-
tion between the central region and the outer swirl flow, we used a
microconductivity method. This measurement technique introduces
a small quantity of passive, marker fluid and measures the time

Fig. 10. Time series of concentration fluctuation in the upward swirl near the tank
perimeter r=20 cm. (a) Time evolution. (b) Time evolution but with running average
removal. Large fluctuations occur for times less than 20 s.

history of the concentration fluctuations of the fluid at some other
point in the fluid. Typically a salt or dye solution is used as the
marker-body. Salt concentration can be detected using conductivity
probes and dye concentration can be measured by light absorption
or laser induced fluorescence (LIF).

Measurements were taken at two locations. Both measuring
points were at 25 cm above the bottom of the tank and at radii of
10 and 20 cm from the center of the tank. This location is about
10 cm above the top of the impeller. The locations of the conductiv-
ity probes were chosen so that the probe at a radius of 10 cm was
situated at the edge of the dead zone, whereas the probe at 20 cm
provided data from the centrifugally driven up-welling swirl flow at
the tank perimeter. Salt water of 1 l volume is suddenly introduced
at the surface of the fresh water in the tank at a location close to
the tank perimeter but on the opposite side of the impeller from
the conductivity probes. The injected volume of salt water is broken
up by the impeller motion and gradually distributed throughout
the tank, including eventually, the dead zone. It takes about 5 s for
small parcels of salt water to reach the region of the conductivity
probe, subsequently there are large fluctuations of concentration
and a gradual increase in the mean concentration level over time.
For times greater than 30 s a steady-state develops with minimal
concentration fluctuations.

Concentration time series data at r = 20 cm are presented in
Fig. 10a. The time series for Fig. 10a shows a steady-state back-
ground concentration level of C = 0.6% of initial value (C0 = 100%)
after 30 s. The 1 l volume of salt water is rapidly mixed to concentra-
tion levels of 1% by the time it takes to reach the conductivity probe.
Fig. 10b shows the evolution of concentration fluctuations deter-
mined by subtracting the mean trend-line which is determined by a
smooth, sixth-order polynomial fit to the data. Comparing Fig. 10a
and b shows that the initial fluctuations are as large as the mean
concentration levels. Subsequent concentration fluctuations decay
exponentially in time: a similar exponential decay result is given in
Tatterson (1991, Fig. 4.33, p. 232). An “event” is defined by the sig-
nal exceeding 1/e of its maximum. The conditional analysis of the
concentration signal yields the distribution of the magnitude and
duration of the events. Fig. 11 gives the number of events vs. their
magnitude. Fig. 12 gives the number vs. the duration of the events.
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Fig. 11. Conditional analysis of conductivity (histogram: number vs. intensity) in the
upward swirl near the tank perimeter. The intensity distribution of mixing events is
related to the height of the peaks. Most common events are associated with smaller
peaks.

Fig. 12. Conditional analysis of conductivity (histogram: number vs. length of event)
in the upward swirl near the tank perimeter. The duration of mixing events is
related to the length in time of the peaks. Most common events are short lived.

Few events were larger than 0.03% C0 in magnitude and most events
occurred in less than 0.05 s. The largest fluctuation magnitude of
0.4% was longest in duration (approximately 4 s). That is, the most
intense events were also the longest lived. Both the magnitude and
duration of events decreased with increasing time.

Fig. 13a shows that the evolution of concentration fluctuations of
the interior of the tank at r = 10 cm is a cumulative error function-
like—a characteristic of diffusive processes. It is seen that the magni-
tude of concentration after 60 s reaches 0.6% which is the same level
as in the perimeter zone seen in Fig. 10a. On comparing Figs. 10a
and 13a it is seen that the concentration evolutions are quite differ-
ent. Fig. 13a shows that the magnitude of concentration fluctuations
is always small in the tank interior. This is shown explicitly by the
time series of concentration fluctuations given in Fig. 13b. Evident
in Fig. 13b is the absence of large fluctuations in the interior of the
tank throughout the 60 s time series. This contrasts with the large
fluctuations of the perimeter zone for time intervals less than 20 s
seen in Fig. 10a. The differing evolution at the two locations suggests
that the flow within the tank is structured.

5. Summary and conclusions

This study is motivated by the need to understand observations of
inhomogeneous mixing in industrial crystallizers. Lagrangian marker
particle (LMP) and microconductivity results are presented for mea-
surements undertaken in a 280 l mixing tank with a single bottom-
sweeping impeller. Values of Reynolds numbers are greater than
25, 000 at the impeller tip. Long-time series of LMP trajectory data
allows determination of the details of the circulation in the tank.
The action of the impeller drives a rapidly moving upward-spiralling
flow having a thickness of 9 cm at the tank perimeter. The flow re-
turns slowly in a descending spiral through a series of secondary
tori and through a quiescent region centered on the impeller. The
radius of this quiescent region (called the dead zone) is about 7.6 cm.

Fig. 13. Time series of concentration fluctuation at the center of the tank, r=10 cm.
(a) The concentration evolution is cumulative error function-like. (b) Evolution of
concentration with running average removal. In both (a) and (b), there are no large
concentration fluctuations at any time. This differs from the concentration evolution
at the perimeter shown in Fig. 10b.

Measured return-rate distributions show that the LMP most fre-
quently visits the impeller region and when it leaves it usually re-
turns quickly. Much smaller frequencies of return are found in the
center regions of the tank. Long return-times are associated with
paths well above the bottom-sweeping impeller. This illustrates that
flow structuring consisting of rapid and slow moving regions of flow
occurs in the tank.

Conditional analysis of microconductivity signals reveals that the
concentration fluctuations of added salt solution evolves differently
in the central region and in the perimeter. In the central region, only
small magnitude concentration fluctuations occur and the evolution
of fluctuations is diffusive-like. In contrast, in the perimeter, large
concentration fluctuations occur. Taken together, the LMP data and
the microconductivity results suggests that rapid transport of scalar
concentration occurs at the rapidly moving upwelling swirl along the
tank perimeter. On the other hand, diffusive-like micromixing occurs
in the slowly moving central region. The segregation of these regions
leads to inhomogeneous mixing in the tank. This can be understood
in light of the distinction between stirring and mixing discussed by
Eckart (1948) and accounts for the observations of inhomogeneous
mixing in these types of industrial crystallizers where crystallization
reactions occur preferentially near the center of the bottom of the
tank as opposed at the tank's perimeter.

The calculated Kolmogorov production rate K̇ shows that the
number of dimensions (of the dynamical system) necessary to ac-
count for the structure of the flow exceeds 20, thereby illustrating
the (high) complexity of the flow. Nonetheless, surprising structure
exists in this high Reynolds number flow. Vertical stacks of small
horizontal tori, with an approximate radius of 2 cm concentric with
the impeller axis, exist at loci of shear regions adjacent to the dead
zone and the tank perimeter. Thus the flow in the tank is composed
of a large torus of the perimeter swirl and downwelling flow en-
veloping stacks of smaller tori. The transfer of energy from the im-
peller involves flow on and between various tori in the tank. This
is reflected in the form of the return-time distribution. Measured
return-time distributions are found to comprise not just one clear
distribution but a superposition of two log-normal distributions. One
is composed of short return-times (0–10 s) corresponding to LMP
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trajectories along the upward swirl and return flow. Longer return-
times (up to 80 s) arise for LMP trajectories that move through the
secondary tori. Furthermore, there is additional order to the flow as
four sets of period doubling sub-sequences were discovered in the
return-time distribution.

There are engineering implications of the results of our measure-
ments. We suggest that in CSTRs with bottom-sweeping impellers,
one will see changes in mixing as the secondary tori are sequentially
formed as the tank is filled. Thus, the aspect ratio of the diameter to
depth of the fluid in the tank is important. The aspect ratio and the
tori structure can be used in an engineering design cycle to improve
product quality and yield. In tanks with reactant feed jets near the
impeller region, one can develop vertical concentration variations
because of the presence of the secondary tori. These can affect, for
instance, the particle size distribution in crystallizers. The greater
frequency of return to the impeller region also implies that feed jets
in this region will cause greater crystal growth in this region.

The experimental results presented here for high Reynolds num-
ber bottom-sweeping impeller tank flow support a description of
the flow organized into tori as suggested by the Ruelle–Takens–
Newhouse scenario. The present experimental approach consisting
of LMP and microconductivity measurements allows the detection of
this organization as well as the details of turbulent mixing on smaller
scales. These two measurement methods give compliementary in-
formation which combine to give a more complete understanding of
mixing in the bottom-sweeping impeller mixing tank.
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