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Transverse waves and vortex fields in non-relativistic fluid flows
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A special acoustic spacetime generalization of the Navier–Stokes equations including a fluid vortex field is
presented. This spacetime theory is verified by experimental measurements at low speeds of the order of
meters/sec. The vortex field explains the enhanced energy dissipation and the persistence of transverse
wave mode excitations.
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1. Introduction

Acoustic spacetimes have been used to develop hydrodynami-
cal models of general relativistic effects by Unruh [1,2] and others,
see Ref. [3] for a recent review. By restricting these spacetimes to
special acoustic spacetimes (SASTs), we have developed a SAST the-
ory of viscous fluid dynamics called gemetro-fluid dynamics (GFD).
A SAST naturally incorporates a limit to the maximum speed of
transverse waves. These are composed of the wave modes of the
vortex field. We show how the GFD generalizes the Navier–Stokes
theory (NST) to include the vortex field, thereby promoting this
generalization of the NST to a classical SAST field theory. Balancing
inertial, viscous and vortex stress–energies then leads to the fluid
spacetime theory that we verify using experimental measurements
at low speeds of the order of meters per second.

The vortex field introduced here is an exact fluid analogue of
an electromagnetic field. The present Letter shows that travelling
wave modes of the vortex field fluid flows are similar to electro-
magnetic wave modes of an electromagnetic field.

A quantifiable manifestation of transverse wave modes of the
vortex field in experimental work is elevated energy loss [4]. In
contrast, energy loss required for longitudinal waves is small as
little work is needed for their propagation. Small amplitude, short
wavelength transverse waves are evanescent involving little energy
expenditure. Large amplitude, transverse waves, however, require
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larger energy expenditure to propagate, can be long lived and,
thereby, significantly affect the fluid dynamics. Because of the cou-
pling of the vortex field to the mean flow, these waves often move
at or near the average stream velocity of the main flow.

Evidence of transverse waves is found in the experiments of
White [5], Taylor [6] and subsequent researchers [7] on flow in he-
lical pipes of circular cross-section. In these flows, the transverse
waves generated are so pronounced that turbulent pipe flow inlet
to a helical section appears to “relaminarize” [8–10]. Furthermore,
on outlet to a straight section, the transverse wave excitation per-
sists for at least a thousand pipe diameters [7]. It is natural to
analyze these waves in the context of the Navier–Stokes theory
(NST) but, as we show here, the NST does not explain the en-
hanced energy dissipation and long lifetime of transverse waves
in helical pipe flow [7].

2. Vortex fields in special acoustic spacetimes

The experimental results noted above can be described as due
to the excitations of a fluid vortex field in a special acoustic space-
time [4]. Because the vortex field needs a spacetime for its def-
inition, the present theory owes much in its formulation to an
understanding of the structure of relativistic fluid mechanics [11].
The vortex field can be understood from the viewpoint of NST vari-
ables. In the NST, given the Eulerian velocity field u, the vortex
field F̊ = {ω,ζ } includes the vorticity, ω → ∇ × u, and the swirl,
ζ → u × ω, field vectors. The variables G̊ = {�,ξ} are excitations
of the vortex field and are linearly related to F̊ using fluid consti-
tutive parameters. The components of F̊ and G̊ can be written as
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anti-symmetric tensors. Significantly, these tensors unify the vor-
ticity and the swirl field. One can introduce transverse waves into
the NST and calculate the response of fluid viscosity and momen-
tum on those waves [12]. To fully include the interaction of the
fluid and the wave field requires the development of a theory in-
cluding the transverse wave modes of the vortex field as part of
the stress–energy balance.

Three types of transverse wave (TW) modes are possible as
described by the triad {ω,ζ, u}. These waves arise in the gen-
eral decomposition of wave systems with local cylindrical sym-
metry [13, Sec. 9.18] which holds for helical flow when ratio
d/D of the pipe diameter d to the projected helix diameter D
is small. The three waves are named by the components of the
wave lying in the transverse-to-the-flow direction in analogy to
electromagnetic field theory [13]. They are transverse vorticity–
swirl (TVS), transverse vorticity (TV), and transverse swirl (TS)
waves. The TVS waves do not propagate in a bounded medium.
TV and TS waves take the form of cylinder functions, i.e., pro-
portional to Jn(pnmr/a) cos(nφ)exp(−iαnmz) where r is the trans-
verse radial coordinate, φ the transverse angular coordinate, and
z the streamwise coordinate for a pipe of diameter d = 2a. Here
Jn(x) is the nth Bessel function. The TV modes are computed to
meet the zero-slip condition Jn(pnm) = 0. These modes form a
basis set for expanding any radial velocity profile in these flows
u(r) = ∑∞

m=1 Am Jn(pnmr/a), and consequently a basis for the vor-
tex field modes. Examples of the TV modes are illustrated alpha-
betically in the figure inset for (n,m) = (1,1), (1,2), (2,1), (2,2).
The (1,1) mode is observed in helical pipes and in the straight
section down-stream of a helical pipe for more than a thousand
diameters.

The theoretical existence of a vortex field in a SAST follows
mathematically from the converse of the Poincaré lemma [14, p.
27] in the same way as it does in electromagnetic field theory [15].
Based on a theorem of Kiehn [16, vol. 5, p. 122], one can show for
SASTs that are deformable, i.e., ones which can be slightly curved,
that there are conserved 4-currents. In general, the existence of
conserved currents in a SAST implies the existence of a vortex field
in time varying flows. Using these properties and known results
concerning the structure of the Navier–Stokes equations (NSEs) for
a spacetime [11], but restricted to a SAST, one can assemble the
tensor component form of the field equations for a Newtonian fluid
flow with a vortex field:

(τe − τn)
μν
;ν = − F̊ μν jν, (1a)


G̊κν = F̊κν, (1b)

F̊μν = 1

2

(
∂ Aν

∂xμ
− ∂ Aμ

∂xν

)
, (1c)

−�Aμ = −(
∂2

t − ∇2)Aμ = 4π

η̄
jμ. (1d)

In Eq. (1a), stating the stress-energy balance in a fluid with
a vortex field, the first covariantly differentiated term is the Eu-
ler stress–energy τκν

e = ρuμuν + p(gμν + uμuν) due to the fluid
inertia. Here the SAST metric for one time and three spatial coor-
dinates is (gμν) = diag(−1,1,1,1), cm = 1. The SAST Euler equa-
tion is τ

μν
e;ν = 0. The second term on the left in Eq. (1a) τ

μν
n =

η(P ε
ν uμ;ε + P ε

μuν;ε) with Pμν = (gμν + uμuν) is the Newtonian
fluid stress–energy tensor of an incompressible fluid. Here the uμ

are the 4-velocity components, p is the pressure and ρ is the fluid
density. The equation (τ κν

e − τκν
n );ν = 0 is the SAST equivalent of

the NSEs [11]. The contribution of the vortex field stress–energy
tensor τκν

m = − F̊ iν jν is contained in the right-hand side of Eq. (1a)
[17, Section 12.10]. The Lorentz force − F̊ iν jν forms a source of
self-excitation to the flow. Eq. (1b) states the linear relation be-
tween the vortex field excitations G̊ and the vortex field F̊ . Eq. (1c)
shows the vortex field is obtained from a vector potential A sat-
isfying wave equation (1d). The material parameter η̄−1 appearing
in that wave equation gives the strength at which the vortex field
is coupled to the fluid current j.

Using standard techniques [13,17] we can form a tensor τ̊
μν
m ,

the fluid dynamical analogue to the Maxwell stress–energy tensor,
whose components are given as.

4πτ̊
μν
m = gμα Ḟαβ Ḟ βν − 1

4
gμν Ḟαβ Ḟ αβ, (2a)

4πτ̊ 00
m = 1

2

(
κ2ω2 + λ2ζ 2), (2b)

4πτ̊
0 j
m = 4πτ̊

j0
m = −(κω × λζ ) j, (2c)

4πτ̊
jk

m = −(
κ2ω jωk + λ2ζ jζ k) + 1

2

(
κ2ω2 + λ2ζ 2)δ jk. (2d)

The vortex field {ω,ζ } used in these equations is obtained from
the 4-vector potential A according to Eq. (1d). Since the units
of ω are inverse seconds, T −1, [ζ ] = LT −2, then for dimensional
consistency we have [λ] = T L−1, i.e., inverse velocity. We note
that the absolute viscosity [η] = [m/LT ] = ET /L3 so that ητ̊ 00

m =
−η
8π (κ2ω2 + λ2ζ 2) represents the energy dissipation of the vor-
tex field. Here E represents the units of energy. The other tensor
components represent momentum dissipation ητ̊

0 j
m and stress dis-

sipation ητ̊
jk

m . In Eqs. (1a)–(1d) and (2a)–(2d) there have been
introduced constitutive parameters {κ, κ̄, λ, λ̄, η̄}. Only the ratios
of the first and second pairs of parameters need be specified.

For comparison to experimental results, we present two re-
lations for the energy dissipation in pipe flow using an energy-
integral method [4]. From Eq. (2b), the energy dissipation due to
the vortex field and the NST vorticity (without wave–wave interac-
tions discussed below) can be written as [4]

dE
dt

= −32ηFd〈‖u‖〉2

d2
= −η

∫
Δ

(
κ2ω2 + λ2ζ 2)dV (3a)

≡ −η
〈‖u‖〉2h0[u]{1 + λ2h2[u]}. (3b)

In Eq. (3a), the term −32ηFd〈‖u‖〉2/d2 gives the energy dissi-
pation for a turbulent flow in terms of a friction factor Fd for
a pipe diameter d. This is equated to the vortex field energy
dissipation obtained from ητ̊ 00

m using Eq. (2b). For simplicity,
we now set κ = 1. In Eq. (3a) 〈‖u‖〉 ≡ ∫

Δ
‖u‖dV and h0[u] ≡∫

Δ
‖ω‖2〈‖u‖〉−2 dV . The Navier–Stokes dissipation contains only

the ω2 integrand in Eq. (3a) [4]. Using the relations ω → ∇ ×u and
ζ → u × ω, from NST, it is seen that h0[u] is a degree zero func-
tional of the velocity (does not depend on the scale of the velocity
field) and h2[u] ≡ λ2

∫
Δ

‖ζ‖2‖ω‖−2 dV is a homogeneous degree
two (quadratic) functional of the velocity field scale, such that
hn=2[αx] = α2h2[x]. These relations allow one to obtain the friction
factor Fd = Cd/Cd0 = (d2/32)h0[u]{1 + λ2h2[u]}. For large enough
velocity, the additional dissipation due to the vortex field scales as
λ2h2[u] compared to the scaling of dissipation in a straight pipe,
nominally given by h0[u].

Including the wave–wave interaction of TV and TS waves, from
Eq. (2c) expressed as an energy dissipation integral, leads to the
second relation

dE
dt

= −32ηFd〈‖u‖〉2

d2
= −ηλ

∫
Δ

(ζ × ω) · êz dV

≡ −ηλ
〈‖u‖〉2h1[u]. (4)

Here h1[u] is a homogeneous degree-one (linear) functional of u.
This expression applies for both TS and TV waves. When both TS
and TV waves interact this expression has a non-trivial value.
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Fig. 1. Comparison of theory and experiment. Main curves for energy dissipation
showing predicted (+1) and (+2) slopes due to vortex field mediated dissipation.
Inset shows lower energy vortex field TV excitation modes for tubular flow.

The predictions of this theory are then linear and quadratic
power laws for energy dissipation. For Eqs. (3a), (3b), the predicted
dissipation dependence on the velocity field scale gives a +2 slope
in a log–log plot of energy dissipation versus Reynolds number.
For the wave–wave interaction, Eq. (4), the predicted dissipation
dependence gives a +1 slope. An intermediate value of the slope
is found when both effects are present.

Let us next compare these predictions to experimental mea-
surements. The experimental results are reported in terms of the
pressure drop factor in the pipe relative to the same length of
straight pipe Fd = Cd/Cd0 for identical flow rates. Fig. 1 plots the
log (Cd/Cd0 ) vs. log (Re = 〈u〉d/(η/ρ)) energy dissipation curves
for two sets of pipe flow data from White [5] and Taylor [6]. Here
u is the flow speed, ρ is the density, d is the pipe diameter, and η
is the absolute viscosity. For helical pipe flow, there is a significant,
heretofore unexplained, increase in the energy dissipation when
the flow begins to vary in time. This behavior begins at the Dean-
to-transitional points (DT). The solid curve is for a pipe with a
curvature ratio of d/D = 1/2050 and for the dashed curve this ra-
tio is 1/50. Here D is the projected diameter of the helical coil. In
the data associated with the solid curve, for Reynolds numbers Re
up to about 2250, the flow is in the so-called “Dean vortex” flow
regime shown in Fig. 1. The transitional regime (DT-TT), occurs
for 2250 < Re < 3200 has a slope of +2. Beyond the transition-
to-turbulence point (TT) the slope becomes +1. For the dashed
curve data, the curve transitions directly from the Dean regime
to turbulent flow with a +1 slope (beyond Re = 5200) passing
quickly through the +2 slope transitional flow region. More ex-
tensive data sets are reported in Ref. [18]. Fitting the data in the
figure gives a value of λ = 0.01 (cm/s)−1 for water. The evaluation
of the other constitutive parameters {κ, κ̄, λ̄, η̄} awaits solution to
the fluid field equation and corresponding experiments.

Recent work in straight pipe flows [19–23] also shows the im-
portance of nonlinear travelling waves in fluid dynamics as in
Ref. [24]; see also [22,23,25] for recent reviews, so we expect simi-
lar transverse wave engendered energy dissipation in straight pipe
experiments.

Let us now show how the present theory relates to the NST. By
taking the small ‖u‖/cm limit, we find [11, Chapter 15, replace c
with cm]

ρ
∂ui

+ ρu · ∇ui + ∇ i p − η∇2ui = − Ḟ iν jν . (5)

∂t
It is seen that the convective nonlinearity u · ∇ui is present. The
Lorentz term − Ḟ iν jν , signalling the presence of a vortex field, is
also nonlinear; it contains the effects of the vorticity and swirl
multiplied by the fluid velocity in the guise of fluid current j. Us-
ing the value for F̊ and the components of the fluid current j, one
can evaluate the right-hand side of Eq. (5)

(
F̊ μν jν

) =

⎛
⎜⎜⎜⎝

0 λζ1 λζ2 λζ3

−λζ1 0 κω3 −κω2

−λζ2 −κω3 0 κω1

−λζ3 κω2 −κω1 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

j0

j1

j2

j3

⎞
⎟⎟⎟⎠ . (6)

Then, from Eqs. (5) and (6) there is obtained

Dui

Dt
= ∂ui

∂t
+ u · ∇ui = − 1

ρ
∇ i p + η

ρ
∇2ui + (λcm − 1)ζ i . (7)

This reduces to the NSEs when λcm − 1 = 0. The term (λcm − 1)ζ i

describes the momentum due to the presence of the vortex field.
It is of the same type as the u · ∇ui term. Using the NST rela-
tion ω → ∇ × u we also find a diffusion equation for the vortic-
ity

∂ωi

∂t
+ Lλcmuω

i = η

ρ
∇2ωi . (8)

The operator Lu is the Lie bracket Luω = [u,ω] = u · ∇ω − ω · ∇u.
Eq. (8) describes the diffusion and convection of vorticity in the
frame of reference of the moving fluid modified by the transfer of
momentum with the vortex field; it describes the evolution of a
coherent vorticity structure. The vorticity structure would be con-

served if ∂ωi

∂t + Lλcmuω = 0. Eq. (8) is similar to the NST expression
obtained from Eq. (7) by setting λcm = 1 and by operating on both
sides with the curl operator ∇×. The NST predicts only that the
vorticity diffuses. In contrast, the present formulation shows that
the vorticity and the vortex field are convected as well as diffused.
This is one reason for the persistence of the Dean vortex emitted
from a helical pipe into a straight section [7].

Finally, a detailed analysis of the interaction of the vortex field
at intermediate speeds leads to a new dissipation mechanism that
takes the form

ζ ≡ σ−1 j = σ−1η̄

4π
κ∇ × ω, (9)

where the “resistance” is given by σ−1 = 4πη
�ρη̄ . The physical con-

sequence of the resistance is that energy dissipation in the vortex
field can be slowed by high resistance. This limits the transfer of
inertial energy-momentum to/from the vortex field in this inter-
mediate speed range. This is a vortex field lifetime effect, different
from an energy dissipation. For the low speed limit, we find no
such rate limiting. Consequently, after a vortex field is built-up, on
moving down stream, it decays at a diminished rate. This allows
a vortex field, built-up in one part of the flow, to be convected to
other parts of the flow. Such a mechanism provides the final piece
of the story for the long lived vortex field downstream of the he-
lical pipe outlet that persists in the straight pipe for more than
a thousand diameters [7]. The energy dissipation results involve
integrals over the vortex field. The effects of the vortex field can
also be measured in terms of the velocity field and the lifetimes
of transverse wave excitations and compared to GFD predictions.
These would quantitatively differ from those of NST.

In summary, the Letter presents a classical acoustic spacetime
field theory of a Newtonian fluid, self-excited by a fluid vortex
field. Mathematically, in SASTs there must exist a vortex field for
time varying velocity fields. The wave structure and energy dis-
sipation found in experiments is consistent with the excitation of
transverse vorticity (TV) and transverse swirl (TS) waves due to the
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vortex field. The experimental results for energy dissipation were
also in agreement with the theory.
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