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1. Introduction

This Letter provides a new analysis of three classical field the-
ories: electrodynamics, fluid dynamics, and gravitation theory. The
objective is to show that a physically motivated extension of these
theories based on current conservation leads to concordances be-
tween the three theories. We then apply the understanding de-
veloped from the concordances to the problem of representing
the curvature of a classical spacetime (gravitation). The analysis
focuses on a differential geometric structure that generalizes the
electromagnetic field tensor Fμν . The generalized structure has
components analogous to the electric and magnetic field vector
components found in Fμν . We show that such a structure should
be included in a field theory whenever there are conserved cur-
rents in a spacetime, i.e., whenever the currents satisfy a conti-
nuity equation. Electrodynamics is an example of a field theory
with such a differential geometric structure — the electromagnetic
field. This new dynamical interpretation of the continuity equation
suggests analogs of the electromagnetic field could be fruitfully in-
cluded in extensions of fluid and gravitation field theories as they
are also constrained by a continuity equation.

We show how such extensions can be developed using the vor-
tex field theorem (VFT) described here. The VFT states that when-
ever there are conserved currents in a 4D spacetime, there are
differential geometric structures analogous to the electromagnetic
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field. We call these differential geometric structures vortex field
structures. Conversely whenever there are vortex fields, there are
concomitant conserved currents. Because the vortex field gener-
ates stress-energy, the vortex field must be included in the stress-
energy flux balance for each theory [1]. This leads to similar equa-
tions for the vortex field, continuity and stress-energy flux balance.

The concordances are significant because results for one of the
continua become transferable to others by scaling, not just by anal-
ogy. For instance, the present work using the VFT refines the analo-
gies between electrodynamical theory (EDT) and fluid dynamics
[2]. For the latter, we obtain an extension of the Navier–Stokes the-
ory of fluids called geometro-fluid dynamics (GFD) with an integral
fluid dynamical vortex field [3]. This is important because the ge-
ometrodynamical theory provides a vector potential from which
the topological change of a continuum during its evolution can be
examined [4–7]. This can form a basis for a fluid model of space-
time where the evolution of whorls, voids, etc., can be tracked.

The analogy between fluid flow and the evolution of a space-
time also can be used to study gravitational black hole analogs
using longitudinal acoustic waves [8–10], see Ref. [11] for a recent
review. As another example of using the VFT to extend a classi-
cal field theory, we develop in this Letter a perfect fluid model of
an evolving spacetime that satisfies the VFT. We show that this lo-
cally becomes equivalent to general relativity theory (GRT) when
the spacetime stress-energy tensor in the perfect fluid model is re-
placed by a metric approximation. We use the perfect fluid model
without these local or any weak field approximations to show how
the shrinking of an initially spherical galaxy produces a vortex and
an axial jet similar to those observed in spiral galaxies.
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2. Background

The present development originates from consideration of the
wave-like excitation modes of a physical continuum. We classify
these excitation modes according to

(i) amplitude,
(ii) type: longitudinal or transverse with respect to their direction

of propagation, and
(iii) degree of coupling to the ambient flow.

Longitudinal waves generally require the medium to be compress-
ible. Small amplitude longitudinal sound waves carry little energy
for nearly incompressible fluids such as water. Small amplitude,
short wavelength, high frequency, transverse waves exist in flu-
ids but are evanescent [12]. However, large wavelength transverse
waves can and do persist to influence the fluid dynamics [13].
These transverse waves have been experimentally observed in he-
lical flows [14, see esp. Fig. 2], [15]. For this flow field, the trans-
verse waves are strongly coupled to the ambient fluid and are
sustained by energy transfer from the ambient flow. This strong
coupling modifies both the vortex field and the ambient flow field.
Experimental support for the existence of such transverse wave
modes of fluid dynamical vortex fields has been recently presented
[3,13]. These transverse waves have a maximum speed of propaga-
tion cm where cm � c. That is, the dynamics of transverse waves in
fluid flows is non-relativistic because the maximum speed of fluid
transverse waves is very much lower than the speed of light c. The
existence of this speed limit cm is most easily enforced by intro-
ducing a special acoustic spacetime. These considerations as well
as corroborating experimental evidence resulted in the formula-
tion of the geometro-fluid dynamics (GFD) which includes a fluid
vortex field [3,13]. This theory has the mathematical structure of
a relativistic fluid theory with a speed of propagation cm replacing
c and includes a fluid vortex field. This leads one to consider the
inclusion of the vortex field in other theories of continua and to
study their resulting similarities, i.e., to consider concordances.

2.1. Vortex field theorem

To develop the mathematical concordances for the three field
theories, we state and prove the vortex field theorem (VFT) link-
ing vortex fields to conserved currents in a spacetime. Preliminary
to this we introduce some definitions. Namely, for a 4D mani-
fold, given an arbitrary 4-vector with contravariant components
( Jμ) = ( J t , J x, J y, J z), the relation (cm = 1)

∂ J t

∂t
+ ∂ J x

∂x
+ ∂ J y

∂ y
+ ∂ J z

∂z
= 0 (1)

is called the J -conservation condition or continuity equation. For
our purposes J is a 4-vector current. We use methods from dif-
ferential geometry for the following calculations [16,17]. To de-
rive a continuity equation, we associate a (differential geomet-
ric) density 3-form � J in the Minkowski spacetime with the 4-
vector current. This involves using the components of the vector
( Jμ) = ( J t , J x, J y, J z) and the four-volume Ω4 = dt ∧ dx ∧ dy ∧ dz.
The 3-form density � J is then defined by the interior product of
Ω4, denoted i J (Ω4), along the direction of the vector J as [18]

� J ≡ i J (Ω4) = + J t dx ∧ dy ∧ dz − J x dt ∧ dy ∧ dz

+ J y dt ∧ dx ∧ dz − J z dt ∧ dx ∧ dy. (2)

We use a metric (ημν) = diag(−1,1,1,1) for the Minkowski met-
ric tensor and include its effects on the Hodge-� of differential
forms in a spacetime [16, p. 46]. Raising/lowering of the time-
Table 1
Comparison of (3 + 1)D vortex field theory (VFT) to electromagnetic theory (EMT).

VFT EMT

κ∇ · ω = 0 ∇ · B = 0
κ

cm

∂ω
∂t + λ∇ × ζ = 0 1

c
∂ B
∂t + ∇ × E = 0

λ̄∇ · ξ = 4πρξ ∇ · D = 4πρD

− λ̄
cm

∂ξ
∂t + κ̄∇ × � = 4π

η̄ Jξ − 1
c

∂ D
∂t + ∇ × H = 4π J D

component indices changes their sign. The exterior derivative of
the current density � J can be evaluated as follows

d � J = d
(

J t dx ∧ dy ∧ dz − J x dy ∧ dz ∧ dt

+ J y dx ∧ dz ∧ dt − J z dx ∧ dy ∧ dt
)

= d
(

J t dx ∧ dy ∧ dz
) + d

(− J x dy ∧ dz ∧ dt

+ J y dz ∧ dt ∧ dx − J z dt ∧ dx ∧ dy
)

= d
(

J t dx
) ∧ dy ∧ dz + (−1)1 J t dx ∧ d(dy ∧ dz)

+ d
(− J x dy ∧ dz ∧ dt + J y dz ∧ dt ∧ dx − J z dt ∧ dx ∧ dy

)
=

(
∂ J t

∂t
+ ∂ J x

∂x
+ ∂ J y

∂ y
+ ∂ J z

∂z

)
dt ∧ dx ∧ dy ∧ dz. (3)

If the quantity in parentheses in the last line above vanishes, then
the continuity equation, Eq. (1), is satisfied. Since the differential
4-form volume Ω4 multiplying it never vanishes along any evo-
lutionary trajectory defined by J , the continuity equation implies
the conservation of current density d � J = 0. We call the condi-
tion d � J = 0 the � J -conservation condition. Conversely from Eq. (3),
d � J = 0 implies the continuity equation. Using the equivalence of
� J -conservation and a continuity equation leads to the formulation
of the vortex field theorem.

Theorem 1 (Vortex Field Theorem (VFT)). For a simply connected 4D
spacetime manifold with conserved currents, � J -conservation (equiva-
lently, the continuity equation) implies the vortex field equations (Ta-
ble 1) and conversely in a spacetime, a vortex field has a conserved
current density.

The proof of the VFT depends on the converse of the Poincaré
lemma (CPL [16, p. 27]). According to the CPL, if we have a con-
served 3-form current density � J , i.e., d � J = 0, then there is a 2-
form such that dH = 4π � J . By Poincaré’s lemma d(H + F ) = dH +
dF = dH + d2 A = dH , whenever F = dA = 1

2 (Aν,μ − Aμ;ν)dxμ ∧
dxν , where F is a 2-form and A is a 1-form. The gauge potential
A serves to define F and the latter provides a gauge transforma-
tion of H . If we have dH = 4π � J , then because d2 H = 0 = 4π d � J ,
we have current density conservation. To construct a physical the-
ory, the 2-form H can be related to the 2-form F by a constitutive
equation in terms of their components: Hκλ = Cμν

κλ Fμν . For the
case of a vacuum spacetime one can use the Hodge-� to express
the constitutive relations as −�H = F . When these components are
expressed in the simplest manner for a spacetime, we obtain the
equations in Table 1.

The vortex field theorem shows that the existence of current
conservation is equivalent to an analog of Maxwell’s equations.
While this is a simple result, it is not trivial: its significance seems
to have been gone unrecognized in fluid mechanics, except as an
analogy. It has also gone unrecognized in electromagnetic field the-
ory that the continuity equation implies Maxwell’s field equations,
although the converse is easily demonstrated: operate with ∂t on
∇ · D = 4πρ , evaluate ∇ · (∂ct D − ∇ × H = −4π J ) and combine
to obtain the continuity equation. In both of these theories the
conservation of current is often adopted as an auxiliary condition.
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For the case of electromagnetic theory the importance of the vor-
tex field equations is clear: We see that the mathematical form
of electromagnetic field theory can be derived from the continuity
equation. For the case of fluid dynamics, the vortex field must ex-
ist for the same reason as in electromagnetic theory: a conserved
current. The VFT then implies that vortex field effects, experimen-
tally observed in helical pipe flow [13], should exist generally as
excitations in other flows.

The vortex field can be decomposed in terms of transverse wave
modes as mentioned in the background section. In Table 1 we also
compare the vortex field equations to Maxwell’s equations for the
transverse wave fields in electromagnetic field theory. The similar-
ity of these equations shows the concordance among field theories
having a vortex field and the classical electromagnetic field theory.
Here {λ, λ̄, κ, κ̄, η̄, cm} are material constitutive parameters that
can be determined from experiment. The parameter η̄ provides the
coupling of the current to the vector potential. The vortex field
equations imply the existence of a vector potential A whose com-
ponents Aμ satisfy a wave equation

−�Aμ ≡ −(
∂2

cmt − ∇2)Aμ = 4π Jμ. (4)

The vortex field components Fμν = (Aν,μ − Aμ,ν) determined by
the vector potential A involve the vorticity ω and swirl ζ fields,
a nomenclature derived from fluid dynamics. These quantities are
given in Eq. (5) below. The wave equation describes transverse
waves in which a component of the field is orthogonal to the di-
rection of propagation of the wave.

3. Three classical continuum theories

The physical basis of the unified approach developed for the
three field theories studied in this paper is the existence of trans-
verse waves and conserved currents in the continuum. The math-
ematical basis is the vortex field theorem (VFT). The presence of a
vortex field modifies the stress-energy flux balance in the contin-
uum. Below we give a comparison of the vortex field theory (also
abbreviated VFT) to electromagnetic field theory (EMT). Then, by
including the stress-energy of a matter field, mathematically con-
sistent with the vortex field, we are able to compare the extended
electrodynamical theory (EDT), fluid dynamics (GFD), and gravi-
tation (GFT). The GFT leads to Einstein’s view of gravitation via
an additional step called kinematization described below whereby
the spacetime stress-energy in the dynamic stress-energy flux bal-
ance is replaced using a quasi-static, local metric approximation.
We also consider relevant experimental or observational corrobo-
ration of the theories.

3.1. Comparison of VFT to EMT

The VFT equations can be cast into the form of Maxwell’s equa-
tions in a (3 + 1)D representation as shown in Table 1. Mixed
Dirichlet–Neumann boundary conditions can be used: specifying
values for ζ and normal derivatives of ω on boundaries. In Ta-
ble 1 cm is the maximum speed of transverse waves, c is the
speed of light, and η̄ gives the coupling of the current to the vor-
tex field. This coupling parameter does not appear in Maxwell’s
equations. The VFT equations are analogous to the Maxwell field
equations and they provide a new basis for the derivation of the
Maxwell field equations for a 4D continuum having conserved cur-
rents. Both EMT and VFT define a wave equation (re. Eq. (4)) from
which their respective vortex fields Fμν can be computed. Because
of the linear dependence of the vortex field F on the vector po-
tential A, the modes of the vortex field F will also satisfy a wave
equation.
Table 2
Stress-energy flux balance in three theories. Here jν = (ρqcm,ρqui)ν . Conserved
currents jν are coupled to a vortex field as described in Table 1.

EDT (τe + τm)μν ;ν = 0, (τe)
μν ;ν = F μν jν

GFD (τe − τn − τm)μν ;ν = 0, (τe)
μν ;ν = (τn)μν ;ν − F μν jν

GFT (τe − τst )
μν ;ν = 0, (τe)

μν ;ν = −F μν jν

3.2. Stress-energy flux balances

The current or velocity field must be specified to completely
determine the dynamics of a physical medium. Classical field the-
ories specify these quantities using stress-energy or stress-energy
flux balances. These equations must be formulated in a way that
is compatible with the symmetry of the vortex field. This locally
requires Lorentz covariance in the tangent space of the underlying
manifold using the maximum speed of the transverse waves cm .
More generally, for electrodynamical theory (EDT), geometro-fluid
dynamics (GFD), and the perfect fluid spacetime gravitational field
theory (GFT), the stress-energies must be tensors. As seen in left
hand column of Table 2, the stress-energy-flux balance equations
have the same general form. The right-hand column gives the same
results as the left, but uses the identity τμν ;ν = −F μν jν for both
the vortex field stress-energy τm and the spacetime stress-energy
τst . The semicolon indicates covariant differentiation.

In Table 2, τ
μν
e = ρuμuν + p(ημν + c−2

m uμuν) is the Lorentz
transformation covariant stress-energy of the mass distribution.
Here p is the pressure and ρ the density. The stress-energy

4πτ
μν
m = ημα Fαβ F βν − 1

4 ημν Fαβ F αβ is a symmetric, traceless ma-
trix. The tensor τst has the same mathematical form as τm . The
Newtonian fluid stress energy for a fluid with absolute viscos-
ity η is given again by a symmetric matrix having components
τn
μν = 2η(σ̃μν + δθ Pμν). In the latter, the stress-energy projected

into a spacelike 3-volume is given by σ̃μν = 1
2 (uμ;ε P ε

ν +uν;ε P ε
μ)−

1
3 θ Pμν where the projection operator is given by Pμν = ημν +
uμuν , (ημν) = diag(−1,1,1,1) is the spacetime metric tensor, and
θ = uμ

;μ . The 4-velocities (uμ) satisfy the normalization condition
(cm = 1) uμuμ = −1 [1,4,19].

The equations in the right-hand column of Table 2 can be inter-
preted as mass distribution fluxes driven by a with stress-energy
flux originated by various force fields. Each of the three field the-
ories, involve a Lorentz force or analog (τm)μν ;ν = −F μν jν that is
evaluated as follows:

(
F μν jν

) =
⎛
⎜⎝

0 λζ1 λζ2 λζ3
−λζ1 0 κω3 −κω2
−λζ2 −κω3 0 κω1
−λζ3 κω2 −κω1 0

⎞
⎟⎠

⎛
⎜⎝

− j0
j1
j2
j3

⎞
⎟⎠

=
⎛
⎜⎝

+λζ1 j1 + λζ2 j2 + λζ3 j3
λζ1 j0 + κω3 j2 − κω2 j3
λζ2 j0 − κω3 j1 + κω1 j3
λζ3 j0 + κω2 j1 − κω1 j2

⎞
⎟⎠ , (5)

so that

F iν jν = (
λζ i j0 + κ( j × ω)i), i = 1,2,3,

F 0ν jν = λζ i ji . (6)

The ζ i and ωi terms constitute the vortex field. We have used the
metric (ημν) = diag(−1,1,1,1) to lower the indices of the cur-
rent in Eq. (5). The first line of Eq. (6) describes how, for instance,
the electromagnetic vortex field Lorentz force accelerates the mass
distribution. The term F 0ν jν = λζ i ji in the last line represents the
rate at which the swirl field does work on the mass density. In
Eq. (6) the term −(λζ i ji) is the rate at which the mass distribution
looses energy to the vortex field. The term −(λζ i j0 + κ( j ×ω)i) is
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like a (negative) Lorentz force per unit volume acting on the mass-
distribution to slow it down.

The equations in Table 2 are similar. The differences in signs
appearing in the Lorentz force analogs in the Table 2 depend on
the field system description, leading to concordances rather than
a unification of the three field theories. For the first case, elec-
trodynamics (row EDT), the equations are formulated for a ther-
modynamically closed, conservative system: Overall, the rate of
change of mass stress-energy equals the force of the electromag-
netic vortex field acting on it. In particular, the rate of change of
the mass-energy equals the rate at which the electromagnetic vor-
tex field does work on the mass distribution (τe)

0ν ;ν = F 0ν jν and
the rate of change of momentum of the mass equals the electro-
magnetic vortex field Lorentz force acting on it (τe)

iν ;ν = F iν jν .
For GFD, second row, the system is a thermodynamically open,

non-conservative, the Newtonian viscous stress-energy contributes
to the energy dissipation rate and the balance of stress-energy flux.
This means that the fluid vortex field instead of doing work on the
fluid to accelerate the mass distribution extracts work and slows
it down. To keep the flow going requires, e.g., a pressure drop as
energy is dissipated instead of being preserved as in the conserva-
tive system of electrodynamics. The vortex field structure is seen
to make an additional contribution to the local stress-energy flux
balance. The formulation for the fluid gravitation theory (third row
GFT) is formulated in the same way as the fluid case, omitting the
Newtonian viscous stresses. The motion of matter leads to the ra-
diation of a gravitational vortex field.

3.3. Electrodynamics

Electrodynamics involves the coupling between the electromag-
netic (vortex) field and the matter field. Separately, the energy–
momentum of the matter field and the vortex field are conserved.
When the two are coupled, their sum satisfies a flux balance equa-
tion. The first equation for the electrodynamical field theory (EDT)
case given in Table 2 describes this balance of stress-energy flux.
The equations (τe + τm)μν ;ν = 0 describe a conservative system:
the rate of change of the inertial stress-energy τe is balanced by
an opposite rate of change in the stress-energy τm . The struc-
ture of the stress-energy τm described above allows this balance
to be written as the right-most column in the EDT row, since
(τm)μν ;ν = −F μν jν . This relation, derived from the vortex field
F μν and current conservation, is common to the other two cases
cited in Table 2. Electrodynamics is the paradigm example of a
vortex field coupled theory satisfying the VFT and has extensive
experimental verification.

3.4. Geometro-fluid dynamics

The second pair of equations in Table 2 are the GFD stress-
energy flux balance equations. These equations have the same form
as those for electrodynamics (EDT) except for the sign of the vor-
tex field contribution τm and the contribution due to the Newto-
nian viscous stress τn . The sign difference occurs because EDT is
a conservative system where an increase of energy in the elec-
tromagnetic field occurs at the expense of a decrease of energy
in the matter field: a moving charge radiates an electromagnetic
field and thereby slows down. In GFD the effect of the vortex field
is to drive the flow. This can be described in terms of an excita-
tion of a base flow by transverse wave modes of the vortex field.
In GFD when the vortex field stress-energy vanishes, τm = 0, the
system reduces to the form of the relativistic Navier–Stokes equa-
tions for a maximum speed of transverse waves of cm � c [19,
Ch. XV]. Both the Newtonian fluid viscous stresses τn and the
vortex field derived stress τm drive the motion of the mass distri-
bution: (τe)

μν ;ν = (τn +τm)μν ;ν . Therefore by including the effects
of a vortex field, the GFD equations extend the Navier–Stokes equa-
tions [3]. GFD limits to the Navier–Stokes equations when cm → ∞
and the vortex field vanishes. Because the sign of the fluid dynami-
cal Lorentz force effects are negative compared to electrodynamics,
the mass-distribution loses energy–momentum when it excites the
vortex field.

Experimental observations of the vortex field, i.e., transverse
wave modes have been shown to explain the substantially in-
creased energy dissipation rates observed in helical flows (com-
pared to the Navier–Stokes theory) [3,13]. This augmented energy
dissipation has a linear and a quadratic power law dependence on
the velocity field that is successfully explained in GFD by the vor-
tex field stress-energy dissipation rate tensor ητm . (Here η is the
absolute viscosity [3].) In the helical flow experiments, a turbulent
flow is from a straight section to a helical section where it re-
laminarizes into a main flow plus a vortex field flow consisting of
transverse wave modes. On exit, the vortex field modes persists for
thousands of diameters downstream after exit into another straight
section [15]. This fluid vortex field is supported by the analog of
an electrodynamical Lorentz force given by (±τm)μν ;ν = ∓F μν Jν
appearing on the right-hand side of the equations in the right col-
umn of Table 2. As the pressure drop across the helical flow guide
is further increased the number of vortex field modes increases
until a turbulent state is observed [15].

The GFD equations include the Newtonian viscous fluid stress
τn . In the limiting case of vanishing vortex field the GFD equa-
tion limit to the Navier–Stokes equations. For a perfect fluid, the
Newtonian viscous stresses vanish. Here one has to consider steady
vortex fields analogous to steady magnetic and swirl fields as well
as time-dependent excitations. In the case of perfect fluids all three
cases become nearly identical in form. The GFD (as a field theory)
is the second example of a vortex field theory satisfying the VFT.

3.5. Gravitational theories

Many theories of spacetime invoke a perfect fluid model [4,20].
For such models of spacetime, the VFT implies that there should be
a spacetime fluid vortex field. This has implications with respect to
the expected rotation of galaxies since the vortex field would be an
additional source of forces acting on the stars, gas, and spacetime
in the galaxy [21]. Therefore, as a third example of vortex field
coupled systems, we consider the implications of the vortex field
theorem for such theories of spacetime. The additional spacetime
stresses could be interpreted as anomalous gravitational forces ad-
ditional to Newtonian gravitation. The gravitational vortex field in
this case represents an energy–momentum loss mechanism due to
gravitational radiation.

Of particular interest is the transition from a flat spacetime
theory of gravitational forces into a curved metric theory of grav-
itation where forces are replaced by a curved spacetime such as
in general relativity theory (GRT). This transition is required of all
theories that “geometrize” starting with a physical basis for the
underlying spacetime, e.g., a perfect fluid spacetime. Here we use
an incompressible perfect fluid model for the flat spacetime pre-
ceding the geometrization step. A Bose–Einstein condensate (BEC)
or superfluid cold dark matter is an example of this scenario [21,
22]. The spacetime currents in such perfect fluids satisfy a conti-
nuity equation and are therefore subject to the VFT. We call the
model a gravitational field theory (GFT) because the interactions
in the spacetime are all gravitational with like masses attracting.

This model gives the third set of equations in Table 2. Com-
pared to GFD, the viscous dissipation term τn has been omitted.
The spacetime stress-energy tensor τst has the same mathematical
form as τm , being derived from the vortex field F μν of spacetime.
In, for instance a perfect fluid model, the stress-energy flux of mat-
ter equals that of the spacetime. This model becomes a general
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relativity theory (GRT) when a mass distribution (generalized to a
mass 4-current) curves a kinematical spacetime defined by the fluid
flow. By this we mean that it is possible to replace the spacetime
stress-energy by the metric geometry of a curved spacetime. This
allows a separation of the physics of the underlying model and the
curved spacetime aspects of the gravitation problem.

In order to obtain GRT, we kinematize GFT as follows: For a
local, quasi-static or steady-state balance of stress-energy, an in-
crease in mass stress-energy is accompanied by an increase in
spacetime stress-energy. So the local stress-energies can be taken
to satisfy a simpler relation than in Table 2 for GFT, namely the
constraint

τ
μν
e − τ

μν
st ≡ 0. (7)

(We use the sign convention of Ref. [1], see Ref. [4] for a list of
other choices.) This relation satisfies the stress-energy flux con-
dition of the GFT in Table 2 and clearly includes the spacetime
stress-energy τ

μν
st . Eq. (7) reflects a static view of spacetime where

the stress-energy of spacetime is exactly that created by matter.
Any material parameters required for balancing this equation are
assumed present in the definition of mass and spacetime stress-
energy. The spacetime is not rapidly evolving in this approxima-
tion. We then apply the Cartan–Weyl approximation theorem for
symmetric tensors. This theorem states that locally the most gen-
eral approximation of a symmetric tensor (to first order in the
second derivatives of a metric tensor gμν ) is given by [23,24]

τ
μν
st ≈ β

√−g

(
Rμν − 1

2
gμν R

)
+ λ

√−g gμν. (8)

Here Rμν = Rκ
μνκ , R = Rκ

κ where Rκ
μνε is the Riemannian (tor-

sion free) curvature tensor and β and λ are constants. This metric
defines a kinematic geometry arising from the spacetime energy–
momentum density τ

μν
st . Because the energy–momentum tensor of

the vortex field spacetime is symmetric, the spacetime is pseudo-
Riemannian with symmetric metric tensor gμν [1]. At this point
the explicit stress-energy of the gravitational field has disappeared.
By using the Cartan–Weyl approximation, it is clear that the Ein-
stein tensor arises from the stress-energy of the spacetime that
is coupled to the mass τ

μν
e . So in a sense, this term contains

the gravitational effects in the way originally envisioned by Ein-
stein, namely that mass leads to the curvature of a kinematic
spacetime. We then obtain using Eq. (8) and the definition Gμν ≡
Rμν − 1

2 gμν R (also known as the Einstein tensor):

Gμν = κτ
μν
e + Λgμν (9)

as a local steady-state approximation. Relative to Eq. (8), we have set
κ = β−1/

√−g = 8πG N/c4 and Λ = −λ/β . Eq. (9) becomes Ein-
stein’s gravitational field equation when κ = 8πG N/c4 where c is
the speed of light and G N is Newton’s gravitational parameter. It
states a relationship between the deviatoric Ricci tensor Gμν and
the stress-energy tensor of matter τ

μν
e . For a finite speed of trans-

verse waves cm , locally the metric gμν limits to the Minkowski
metric in the tangent space as implied by the VFT. The standard
approach to evaluate the phenomenological parameters in Eq. (9)
uses an asymptotic limit as the region of applicability of the equa-
tion is enlarged without limit (Birkhoff’s theorem [25, p. 253]).
This traditional procedure thus omits the large-scale spacetime
currents that can persist in this asymptotic limit. On the other
hand, the fact that the GFT limits to GRT in this limit suggests that
GFT is applicable to the problems solved by GRT as well as being
applicable to more strongly coupled evolution rate dependent and
long range slow field problems not described by GRT.

The result given in Eq. (9) does not, at first glance, appear
to contain the stress-energy τ

μν
st of the spacetime gravitational

field [4]. However, the stress-energy of the gravitational field has
merely been hidden by the Cartan–Weyl approximation, Eq. (8).
The result embodied in Eqs. (7)–(9) thus provides a clarification of
the gravitational energy paradox in GRT whereby the gravitational
stress-energy of spacetime does not explicitly appear. (See Ref. [20,
p. 70], for instance.) The Cartan–Weyl approximation hides the vor-
tex field structure generating τ

μν
st since this quantity is replaced in

the kinematization procedure.
Because of the success of the local approximation Eq. (9), where

κ = 8πG N/c4, it is seen that the gravitational kinematic vortex
field has transverse wave modes that locally travel at the speed
of light waves. We therefore set cm → c, in the GFT although
the maximum speed of spacetime transverse waves (gravitational
waves) might be lower. For large distances, there can appear
anomalous spacetime currents that are not explained by the lo-
cal approximation of GFT leading to GRT. We can account for the
forces caused by these currents and surmount this difficulty by us-
ing the full GFT.

3.6. Vortex field of a perfect fluid model galaxy

To verify that the vortex field extension of gravitation theory
may be useful in the same way as Newtonian gravitation theory
or GRT, we show that there exists a global spacetime gravitational
potential for the spacetime manifold M . To further verify the im-
portance of the VFT based theory, we then provide an illustrative
example calculation of the vortex field strength Fμν of a manifold
consisting of an evolving polarizable spherical fluid spacetime in-
clusion in an otherwise quiescent perfect fluid spacetime environ-
ment. This allows us to present an explicit expression of Fμν for
a cosmologically significant problem. The quasi-static local metric
approximation and the Cartan–Weyl approximation theorem can
be applied at any point to make contact with GRT but this is not
needed in the present analysis especially since we will be con-
sidering the large scale limit where the vortex field is important
compared to a flat spacetime.

That a global potential exists follows as a corollary of the
Chern–Weil theorem [16, p. 149], [17, Ch. 11]. Here the trace cur-
vature, is a global invariant polynomial with respect to coordinate
transformations over the base spacetime manifold M , indepen-
dent of the local moving frame. By the theorem it is then closed
(dF = 0) and exact (F = dA). Furthermore, for a classical vacuum
spacetime, we can employ the Hodge-� and the VFT to determine
the conserved spacetime currents from d � F = 4π � J .

Let us now examine the structure of this trace curvature on a
base spacetime manifold M in terms of the Riemann curvature 2-
form matrix [4, p. 340]:

Rμ
ν = 1

2

(
∂Γ

μ
νλ

∂xκ
− ∂Γ

μ
νκ

∂xλ
+ Γ

ρ
νλΓ

μ
ρκ − Γ

ρ
νκΓ

μ
ρλ

)
dxκ ∧ dxλ. (10)

By setting μ = ν = n and summing, the 2-form trace Riemann cur-
vature indicated by the Chern–Weil theorem is found to satisfy

Rn
nκλ dxκ ∧ dxλ ≡ Fκλ dxκ ∧ dxλ =

(
∂Γ n

nλ

∂xκ
− ∂Γ n

nκ

∂xλ

)
dxκ ∧ dxλ.

Since the trace curvature 2-form F has a potential, F = dA, we
have the non-trivial result that

Fμν = ∂ Aν

∂xμ
− ∂ Aμ

∂xν
= ∂Γ n

nν

∂xμ
− ∂Γ n

nμ

∂xν
. (11)

This shows that without approximations there is a 1-form A =
Aλ dxλ such that F = dA which is related to the connection coeffi-
cients Γ κ

μν modulo a gauge transformation A → A+dχ . By the VFT
there are conserved spacetime currents defined by d � F = 4π � J .
Note that taking the trace has linearized the theory with respect
to the connection. The result of this abelianization is a u(1) gauge
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theory such as that developed in the VFT. That is, the gauge field
strength of the curvature Fμν is a vortex field.

The vortex field Fμν that follows from the Chern–Weil theorem
and the VFT is not quite the Ricci tensor in a weak-field approxi-
mation as the contraction of the Riemann curvature tensor in the
present and the weak-field cases involves different indices. In fact
in Eq. (10) one cannot contract on indices to obtain the Ricci ten-
sor. When one applies the Cartan–Weyl approximation theorem,
Eq. (8), as a first step thereby replacing the spacetime vortex field
energy–momentum tensor τ

μν
st by an approximation, one obtains

the standard results of GRT as described in Ref. [20, Sections 4.3–
4.4]. The latter results are obtained by using tensor analytic meth-
ods involving Rμ

νκλ , and contracting on μ and κ . The weak-field
linearization of the equations of GRT then leads to an electro-
magnetic analog including spin-2 metrical gravitational waves [20,
pp. 74–76]. In contrast the present approach gives an EMT analog
without approximations.

To find the full kinematical spacetime caused by the vortex field
energy–momentum τ

μν
st and a mass distribution, one solves the

field equations in Table 2 for τ
μν
st , then uses Eq. (8) in the last

step to find the metric gμν of the kinematic spacetime:

4πτ
μν
st = gμα Fαβ F βν − 1

4
gμν Fαβ F αβ

≈ β
√−g

(
Rμν − 1

2
gμν R

)
+ λ

√−g gμν, (12)

thereby locally describing a kinematic spacetime including the ef-
fects of the vortex field in a way that is consistent with GRT. This
approach is not limited by the use of the Cartan–Weyl approx-
imation theorem. The latter is merely used here to construct a
local, quasi-static, kinematic spacetime. The trace curvature of the
Chern–Weil theorem always has a stress-energy tensor of the form
given in the first line of Eq. (12). Thus we can always apply the
Cartan–Weyl theorem locally as a quasi-static approximation and
generate a GRT-like spacetime. This spacetime might not have a
simple global structure as we find for our example developed be-
low. We note that the symmetric metric has 10 parameters and
the vortex field has 6. The determination of all these parameters
must be made for a complete geometrical description of the space-
time. When this is done, the present theory describes a curved
spacetime and an electromagnetic analog (vortex field) that is not
limited to a weak-field or small scale, quasi-static, approximation.
These results imply there are spin-1 vortex field gravitational ef-
fects and spin-2 weak-field metric gravitational effects. The low
speed limit to the equations of motion for a perfect fluid yield
Euler equations in which the effect of the vorticity and swirl are
included well below any turbulent behavior [3]. This indicates that
such vortical motion should be commonplace in a universe if it can
be well represented as a perfect fluid.

We now apply these results to model galactic swirls and jets.
By assuming that the material parameters {λ, λ̄, κ, κ̄, η̄, cm} are
not wave-vector and frequency dependent, our model, but not the
over-all theory, is restricted to the slow motions and large scales of
galaxies. We determine a field strength 2-form F = tr( 1

2 Rε
κμλ dxμ ∧

dxν) ≡ 1
2 Fμν dξμ ∧ dξν that can serve as an abelianized gauge po-

tential. Starting with Cartesian coordinates (x, y, z, w) on an S3

galaxy of radius a[η], evolution variable η, we transform to three
(χ, θ,φ) coordinates, then define basis one-forms

ξ χ̂ = a[η]dχ, ξ θ̂ = a[η] sinχ dθ,

ξ φ̂ = a[η] sinχ sin θ dφ, ξ η̂ = dη, (13)

where the radius a[η] varies with the epoch parameter η. (Not to
be confused with the coupling parameter η̄ above.) The orthogo-
nal moving frame is then calculated. This allows the differential
Fig. 1. Direction field of the anomalous gravitation field ω of a galaxy for ä/a =
−1 in a conventional right-hand Cartesian coordinate system with z upwards. (a),
(b) (x, y)-plane disks z = (0.45,0.0), (c) (z, x)-plane disk, y = 0.0, (d) schematic of
particle path lines. There is a small constant, inward directed field ζ also due to the
conserved spacetime currents leading to accelerated galactic shrinking [26–32].

connection Γ = (Γ
j

i [dxλ]) and the field strength 2-form or field
F = dΓ +Γ ∧Γ of the shrinking galaxy to be computed [4, p. 357]
(�,k = χ̂ , θ̂ , φ̂)

(
(3) F k

�

) =
(

1 + ȧ2

a2
ξk ∧ ξ�

)
, F η̂

k = ä

a
ξ η̂ ∧ ξk. (14)

The field strength 2-forms given in Eq. (14) is the abelianized cur-
vature of the galactic spacetime which according to Eq. (5) gives
the ζ and ω fields. We are interested in the excitation or � F field
strength figuring in d � F = 4π � J . Galactic evolution is modelled
by specifying the rate of change of the scaled galactic radius with
respect to the evolution parameter η, ȧ[η] = −cr · sin[η]. The evo-
lution parameter has the same units as a so that ȧ is unitless. The
rate parameter cr is empirical – it depends on the dynamics of
the shrinkage, a topic beyond the present work. The spatial part
of the curvature is homogeneous and isotropic for all values of the
evolution parameter η. The spatial–temporal part is similarly ho-
mogeneous and isotropic. In the transformation of the coordinates
(χ, θ,φ) to (x, y, z), it is found that the values for the vortex field
strength are double valued for the full range 0 � χ < π as the
other two angular variables cover their ranges. Summing forces
from both 0 � χ < π/2 and π/2 � χ < π sheets by identifying
points with the same (x, y, z)-values preserves the local geometry
but changes the global topology to one homeomorphic to the 3D
projective plane RP3. This gives for the vortex field excitation � F
with components � Fμν satisfying d � F = 4π � J . (See Eqs. (5)–(6).)

ω1 = − ä(yr − zx)

arρ
, ζ1 = − x

r

(
1 + ȧ2

a2

)
,

ω2 = + ä(xr + zy)

arρ
, ζ2 = − y

r

(
1 + ȧ2

a2

)
,

ω3 = − äρ2

arρ
, ζ3 = − z

r

(
1 + ȧ2

a2

)
. (15)

Here ρ = (x2 + y2)1/2. The ω-field jet defining a left-handed space-
time flow direction-field has been oriented so that the jet is up-
ward and plotted in Fig. 1a, b, c for selected slices through the
galaxy. Fig. 1d provides a schematic of the path lines of parti-
cles in the galaxy. It is seen that the evolution of the S3 (→ RP3)
manifold has broken the (x, y, z)-spherical symmetry. The result-
ing (ζ,ω)-field constitutes an analog to electromagnetic radiation
whose emission diminishes the size of the galaxy. This “radiation”
represents a transverse massive spacetime mode that is strongly
coupled to the ambient spacetime. Thus, its speed of propagation
may be substantially less than the speed of light, even though the
maximum speed would be still be c. The ζ -field given in Eq. (15)
consists of a (presumably small) spherically symmetric inward di-
rected constant “Pioneer effect” force [26–28]. This inward directed
flux is the consequence of the shrinking of the S3 (→ RP3) mani-
fold. This effect produces a negative density core cusp mollifying
the positive core cusp found in CDM simulations, e.g., [29,30].
These results do not include “normal gravitational mass” effects
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due to black holes, stars, or free hydrogen gas which form the ob-
servable galactic disk – a mere 10% effect. Just kinematic effects are
modelled. These additional effects require the solution of the field
equations including the stress-energy of normal matter as given in
Table 2. Only at this point needs one invoke the hypothesis of a
perfect fluid. From our calculation it is seen that the structure of
galaxies, modulo the 10% normal matter effect, is governed by a
simple dynamics [31]. Given detailed measurements of spacetime
currents, the constitutive parameters in Eq. (5) can be found and
the universality of this dynamics tested.

4. Summary

This Letter describes a mathematical concordance among ex-
tensions of three classical field theories: electrodynamical theory
(EDT), geometro-fluid dynamics, (GFD) and develops a perfect fluid
model of spacetime that leads to a gravitational field theory (GFT)
in which spacetime currents are used to explain the anomalous
vortex structure and jets of spiral galaxies. Experimental and ob-
servational support for these extensions of fluid dynamical and
gravitational theories are discussed. The extensions result from the
application of the vortex field theorem (VFT). The VFT shows that
whenever there are conserved currents, there will be vortex fields
– analogs to an electromagnetic field. Thus it is necessary to in-
clude the vortex field in the stress-energy flux balance equations
for a continuum. This leads to all three theories having a mathe-
matical concordance due to a vortex field. The differences in these
vortex field continuum theories then consists of the kind of cur-
rents satisfying the continuity equation, the coupling of the cur-
rents to the matter fields, and the details of the stress-energy flux
balances used to determine the conserved currents.
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