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Abstract
Fluid dynamical analogs of the electrodynamical Lorentz force law and
Poynting theorem are introduced. Analysis shows the fluid dynamical Lorentz
force and Poynting theorem describe new channels of stress-energy propa-
gation and dissipation due to the action of longitudinal and transverse modes
of flow. These channels are important for describing stress-energy dissipation
along curved stream tubes such as those found in turbulent flows.

1. Introduction

This paper provides a heuristic development of the fluid dynamical analogs of the Lorentz
force law and Poynting theorem of electrodynamics. A companion paper [1] rigorously
derives these fluid dynamical analogs from the recently developed geometrodynamical theory
of fluids (GTF, [2–5]). The new theory is a covariant, causal 4D spacetime theory of fluid
flow. In the paper we explore the physical implications of GTF and compare it to the Navier-
Stokes theory (NST). GTF contains equations isomorphic to the equations of electro-
dynamics. Thus the mathematical structure of the GTF equations can be used to derive the
Lorentz force law and Poynting theorem for fluids [1]. This allows identification of new
avenues of stress-energy propagation and dissipation in fluid flow beyond those contained in
the NST. Our results are expected to have significant impact on the theoretical foundations of
fluid dynamics and its applications including theories of vortex dynamics, astrophysical
structure, and turbulent flow.

The motivation of the present work arises from experimental measurements of the stress-
energy in helical flows or curved stream tubes of turbulent flows. This dissipation can be
significantly larger than predicted by the NST. For example, the experimentally measured
energy dissipation in helical flows can exceed the NST predictions by more than 300% [6].
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Describing this dissipation clearly requires new pathways or avenues of energy-dissipation
that are not contained in the NST. Our focus on the Lorentz force and Poynting theorem arises
from the fact that Lorentz forces and the Poynting theorem energy and momentum transport
can all be measured. Thus the theory presented can be experimentally tested.

The paper is organized as follows. The background section reviews some of the
experimental support for the present theory including experimental measurements and
observations of the isomorphism of parts of electrodynamics and fluid dynamics. We then
discuss theoretical limitations of the NST formulation, especially the consequences of the
diffusive character of the NSEs. The limitations of the NST account of stress-energy dis-
sipation is then examined. The fluid dynamical analogs of the Lorentz force and the Poynting
theorem of electrodynamics insightfully reveal new avenues of stress-energy dissipation that
account for the experimental measurements of enhanced energy dissipation. There follows a
section describing the integration of the Lorentz force into equations for fluid flow and its
relation to the NST. A summary and conclusion section follows.

2. Background

In the NST, the standard method to account for the large values of energy-dissipation in
turbulent flows is to introduce eddy viscosities [7]. This procedure preserves the form of the
NST by replacing the newtonian viscosity with an eddy viscosity which can be many orders
of magnitude larger than the newtonian viscosity of the fluid [7]. The limitations of such
approximations are well known [8]. The introduction of this phenomenology to turbulence
theory has a difficult theoretical justification [9, 10]. A physical theory with such large
corrections is not only unaesthetic, it suggests new physics is needed [11–13].

Because of these and related problems, stress-energy dissipation and stress-energy pro-
pagation has been analyzed using electrodynamical analogies of various kinds; in particular in
[14–16] and more recently by Kambe [17]. The work of Kambe is noteworthy for its
development of a more thorough electrodynamical analogy and for its use of the gauge
theoretic aspects of such analogies [18].

The fluid dynamical theory used here, the GTF, is distinguished from these theories in
that it is a covariant spacetime theory. This means it is form invariant with respect to
transformations of the spacetime. The transformations of most interest for spacetimes are ones
which leave the transverse wave speed constant [19]. In the GTF this speed is denoted c .m

This speed is a material property and so is expected to vary from fluid to fluid. The GTF
equations contain a subset of equations that have the same mathematical form as Maxwellʼs
equations. Thus, these equations are said to be isomorphic to Maxwellʼs equations; both
theories can describe transverse waves. In comparing these theories ≪c cm where c is the
speed of light. This isomorphism is the basis for the analogy used in this paper to explain the
meaning of GTF.

Both GTF and electromagnetic field theory (EMT) are causal theories meaning causes
can be related to effects. This requires a finite speed of propagation so that disturbances at a
given point come from distant points in a sequential order, thereby allowing cause and effects
to be related. Acausal theories differ by being characterized by action-at a distance or infinite
speeds of propagation. For acausal theories, disturbances at a given point coming from even
infinite distances arrive simultaneously with those from less distant points, complicating the
task of relating causes and effects. The equations of EMT are invariant with respect to their
form under Lorentz transformations leaving the speed of light c a finite constant. The fluid
flow equations of GTF share this form invariance for a speed cm. We call this invariance cm-
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Lorentz covariance. As we describe later in more detail, the Navier-Stokes equations fall into
the action-at-a-distance category and are not cm-Lorentz covariant. A formulation of the
Navier-Stokes that is Lorentz covariant applicable to fluid flow has been developed by
Eckhart [20] and Landau and Lifshitz [21]. However, their theory suffers from the action-at-a-
distance problem inherent in the NSEs. (See the end of section 2.2.2.) This naturally moti-
vates the development of a causal, spacetime formulation of fluid dynamics.

2.1. Experimental

In this section we explain the physics underlying the GTF using an electrodynamical-fluid
dynamical analogy. Experimental observations provide striking confirmation of the value of
this analogy for interpreting the structure of fluid flows. For this interpretation, we note much
of electrodynamics is described in terms of the propagation of transverse (wave) modes
through wave guides generated by solutions of Maxwellʼs equations. Thus, it can be
anticipated that transverse modes also would be found in guided fluid flows. This is supported
by experimental observations and theoretical calculations of modal structure in helical flow
guides (Dean vortices [22, 23]), Taylor-Green flows [24] , Taylor-Görtler flows [25], counter-
rotating vortex pairs downstream of a jet in a cross-flow [26], toroidal liquid flow in stirred
tanks [27, 28], as well as excitations of toroidal flows in air [29] can be interpreted as the
generation and propagation of flows with transverse mode excitations. These experimental
results, give clear evidence for the existence of the transverse modes in fluid flow.

In electrodynamics one finds three different kinds of these transverse modes, namely (i)
transverse magnetic (TM) guided modes, (ii) transverse electric (TE) guided modes, and (iii)
transverse electromagnetic modes (TEM) for propagation in unbounded geometries [30]. The
various different modes are denoted by subscripts, e.g., TEmn or TMmn depending on the
mode type. (TE having the electric field transverse to propagation direction or TM having the
the magnetic field perpendicular to the direction of propagation.) In fluid dynamics, we call
the analogous modes transverse vorticity (TV), transverse swirl (TS) and transverse vorticity-
swirl (TVS) modes, respectively [2]. The GTF vorticity field ω is the analog of the magnetic
field B and the GTF swirl field ζ is the analog of the electric field E. These relationships are
developed more fully in the remainder of the paper.

To complete this section, we describe one of the clearest experimental examples of
steady transverse mode fluid flow, that of flow through a helical flow guide of circular cross-
section subsequently feeding into a straight flow guide section of the same circular cross-
section [31, 32]. A turbulent flow enters the helical flow guide, then ‘laminarizes’ into a flow
conventionally described as Hagen-Poiseuille flow with an embedded pair of counter-rotating
vortices propagating downstream. Since helical flow consists of simultaneous rotation and
translation about an axis transverse to the flow, these observations suggest the helical geo-
metry selects a transverse mode flow. The most often observed mode is a counter-rotating
vortex pair called a Dean flow [23]. (See [4] for a more detailed description.) The Dean vortex
pair is a transverse vorticity, TV ,11 mode. The two vortices are not independent; the motion of
one vortex ‘influences’ the other one and conversely: the pair constitutes one mode. This dual
vortex mode is the analog of the transverse magnetic, TM11, mode of an electromagnetic field
in a circular cross-section, helical electromagnetic wave guide. Experimental measurements
show the fluid TV11 mode persisting for hundreds of diameters downstream after exit from
the helical structure [32]. Other modes have been observed, for example, a transverse vorticity
TV21 mode has been measured in curved airflow around a bend [33]. The ‘excitation’ of these
flow modes can be qualitatively explained within newtonian physics as being due to the
action of Coriolis forces. Such forces mimic the part of the Lorentz force ρ ω×u generated
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by the fluid analog to the electromagnetic field in curved stream tubes. (This can be seen by
using a local curvilinear coordinate system consisting of a path variable ds, a radius r, and an
angular variable θ. Since θ=ds rd , the Coriolis force is proportional to ρ θ×u d ds.)

2.2. Theoretical

In this section we present the background theoretical analysis leading from the Navier-Stokes
equations to the geometrodynamical theory of fluids (GTF) including a more formal treatment
of the electrodynamical-fluid dynamical isomorphism. We first examine the propagation
speed of small disturbances or signals in the fluid from a theoretical standpoint. A clear
distinction emerges between theories requiring finite versus infinite speeds of propagation;
this allows one to distinguish between causal and acausal theories. We next examine the stress
and vorticity evolution provided by the NST and that theoryʼs limitations with respect to its
newtonian physics formulation. For expository purposes, we then introduce the electro-
magnetic and fluid dynamic Lorentz force law and Poynting theorems as electromagnetic
analogies. We name the fluid dynamical analog of the electromagnetic field the fluid dyna-
mical vortex field or vortex field for short. The vortex field equations are introduced below
[2]. We show the fluid vortex field-electromagnetic field analogy can be derived as an
isomorphism between their theories. Integral to the development of the theory is the dis-
tinction of galilean and Minkowski spacetimes. This allows us to replace the action-at-a-
distance (galilean spacetime) formulation of the Navier-Stokes equations (with its action-at-a-
distance and attendant infinite speeds of propagation) by a physically robust set of causal fluid
flow equations having finite speeds for the propagation of flow perturbations (Minkowski
spacetime).

2.2.1. Finite maximum speed and causality. Of fundamental concern in understanding the
dynamics of fluids is the kinds of flow excitations and their speed of propagation. This is
important since elementary considerations show the excitations that fluid elements can exhibit
may be considered to consist of a superposition of rigid body translation-rotation as well as
compressional, and torsional modes [21]. Lower frequency longitudinal and transverse (shear)
waves lead to net motion of the fluid. The existence of a maximum phase velocity cm
profoundly constrains these modes [2]. In the following we discuss experimental observations
of such upper velocity limits for compressional and volume-preserving torsional modes. We
also relate these finite speeds to the causal propagation of disturbances.

Let us consider longitudinal sound waves first. These modes are described in the
continuum approximation by a second order (scalar) wave equation. Infinite speeds of
compressional (longitudinal) sound are predicted by the NST theory of incompressible fluid
flow. This infinite speed propagation of sound (action-at-a-distance) for incompressible fluids
is completely consistent with the galilean spacetime of newtonian physics for which the
Navier-Stokes equations (NSEs) are formulated. When a finite compressibility is allowed, the
(longitudinal) mode of sound propagation is described by a second order wave equation for
the scalar density fluctuations with a finite speed of propagation. This finite speed removes
this source of acausality. The speed of longitudinal mode propagation depends on material
properties of the fluid. In most theories this is the compressibility and the shear modulus [34,
section 2.2]. The non-physical effect of an infinite speed of sound might be ignored, since real
fluids are compressible and longitudinal sound waves are often weak. However, the
fundamental problem is deeper as indicated above.

The next kind of sound waves we need to consider are volume-preserving transverse ones
[19]. These modes are described in the continuum approximation by a second order (vector)
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wave equation. For such transverse flow modes, fluid lamella are in relative shear motion.
Normally, as the shear modulus is small, these modes are weak [34]. In the NST, the
resistance to shear leading to kinetic energy dissipation is called a viscous force. These
transverse modes have finite speeds of propagation that depend on material properties
[35–37]. The experimental measurements of propagation speeds range up to the order of

×3 103 m s−1. These speeds are, of course, much less than the speed of light
= ×c 2.9979 108 m s−1, so the usual ‘relativistic effects’ for speeds near c are not of

concern. The measurements of [29] show a finite speed of transverse mode propagation. The
speed is also found to depend on wave number. This dependence is also a prediction of GTF.
For Whiteʼs experiments on helical flow [22], we deduce an effective phase speed of
transverse waves of about 150 m s−1 [4].

The mathematical expression of the problem of action-at-a-distance formulation of the
Navier-Stokes equations involves noting they contain first order time derivatives of the
velocity but second order spatial derivatives of the velocity arising from the viscous stress
term. As we discuss in detail in the next section, this implies their classification as parabolic
partial differential equations: consequently their unequal treatment of space and time
contravenes the requirements of causality [38]. Thus, the problem with the NSEs is very deep.
The weak causality violation, which we term acausality, has a source in the fact that solutions
of diffusion equations, such as the vorticity diffusion equation (See section 2.2.2 below.)
derived from the NSEs, have as elementary solutions a gaussian distribution function that is
nowhere vanishing. This means for an infinitesimal time interval after the introduction of a
point disturbance, the effects of the disturbance are found everywhere as the tail of the
gaussian never vanishes. We conclude physical reasonableness (causality) requires a new
consideration of the dynamics of fluid flow, especially the newtonian viscous term.

These considerations also can be understood in terms of the differences between galilean
spacetimes and Minkowski spacetimes. Galilean spacetime is used for newtonian physical
theories such as the Navier-Stokes equations. Galilean spacetime theories support
(instantaneous) action-at-a-distance and are therefore termed acausal as discussed above. In
cases where there is no time dependence, the action-at-a-distance paradigm makes sense. In
this case equations such as the Navier-Stokes equations become elliptic partial differential
equations. Here, there is no question of acausality as there is no ordering of events. If this time
invariance symmetry is broken, then questions of causality re-emerge. This has important
consequences for the range of applicability of the NSEs. In fact the NSEs give quite good
results for time-independent flows where the equations reduce to an elliptic boundary value
problem formulation [39].

In summary, we see the first step to developing a causal theory is to employ a finite speed
of propagation of disturbances cm. The mathematical apparatus required is that of the special
theory of relativity, albeit for a much smaller propagation speed than that of light. This allows
one to replace the galilean spacetime by the Minkowski spacetime, where causes and effects
can be related by arrival sequence. The rigorous formulation of the equations of motion
embodying these concepts is presented in the companion paper [1]. Here we proceed along a
more intuitive path.

2.2.2. Vorticity, stress-energy dissipation, and stress flux balance according to the NST. Let
us now summarize the Navier-Stokes theory of vorticity, stress-energy dissipation and stress
generation in a fluid. In doing so, we note some theoretical shortcomings of the NST. We also
use this discussion as a vehicle to transition from the standard vector component notation to a
tensor notation in anticipation of the tensor notation used in the remainder of this paper and its
companion [1]. In the Navier-Stokes theory, ν η ρ= is the kinematic viscosity with η being
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the absolute or ‘molecular’ viscosity; ρ is the fluid density. The fluid pressure is denoted by p;
velocity components by u .i The equations describing the evolution of vorticity are commonly
developed by converting the Navier-Stokes equations (NSEs) into an equation for the NST
vorticity Ω ≡ × u. One starts with the NSEs for the velocity components ui in vector
component notation:

ρ
ν= ∂

∂
+ = − + =  

Du

Dt

u

t
u u p u i·

1
, 1, 2, 3, (1)i

i
i i i2

takes the curl across the equation, assuming an incompressible fluid, so = u· 0, then uses
the definitions

Ω Λ Ω≡ × ≡ × × = × u u u u, ( ) . (2)

to obtain the Navier-Stokes vorticity diffusion equations [5, 40],

Ω ν Ω Ω Ω ν Ω∂
∂

+ × = ⟹ ∂
∂

− =   
t

u u
t

u( · ) [ , ] . (3)2 2

The identity Φ× =  0 is used to eliminate the curl of the pressure gradient × p.

The identity × × = −  u u u u( ) ·u

2

2

and the definition of the Lie derivative of Ω along
u, given by

 Ω Ω Ω≡ = −Ω  u u u u[ , ] · · , (4)

were used to obtain the last of equation (3). Equation (3) describes the evolution of NST
vorticity Ω. The left-hand side of the equation defines the time varying Lie or ‘fishermanʼs’
derivative Ω Ω∂ − u[ , ]t of the field Ω along the velocity field u. For an inviscid fluid or high
Reynolds numbers, the right-hand side equation (3) vanishes, so the equation then describes
the diffusion of the conserved NST vorticity Ω in the flow of a perfect fluid. For viscous
fluids, the vorticity diffusion equation is first order in time and second order in the spatial
derivatives. Mathematically, since equation (3) does not contain the same order (i.e., second)
derivatives in all space and time coordinates, it is a parabolic equation describing the diffusion
of vorticity in a galilean spacetime allowing (infinite speed) action-at-a-distance [38, section
3.3]. According to equation (3), the Navier-Stokes vorticity Ω evolves over all space at each
(galilean) time-slice. Because of its diffusive nature, the Navier-Stokes vorticity diffusion
equation can neither describe the finite speed propagation of transverse wave modes nor the
propagation of stress-energy associated with those modes [2].

The energy-dissipation described by the Navier-Stokes theory is kinetic energy loss
derived from the newtonian stress term in the Navier-Stokes equations. This dissipation is
given by the Lamb-Stokes theorem [5, 41, p.581],

 ∫ ∫ ∫ ∫ρ η Ω η Λ= = = − −
∂

d

dt

D

Dt
u dV

D

Dt
e dV dV dS· , (5)KE

M M
KE

M M

1
2

2 2

giving the time rate of loss of kinetic energy KE in terms of a viscosity η, the volume integral
of the Navier-Stokes vorticity Ω and the Navier-Stokes swirl Λ Ω= × u. The last term on the
right-hand side is a surface integral whose value depends on the boundary conditions. The
kinetic energy density of the fluid is given above as ρu .1

2
2 The integrands in equation (5) are

entirely point functions of local position and time—they are local fields whose values change
as a function of time. As discussed above, these field values have effects with diffused
amplitudes arriving at infinite speed to the field point from distant points. Using the same
methods used to derive equation (5) we find the following diffusion equation for the kinetic
energy density eKE in the absence of body forces:
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⎛
⎝⎜

⎞
⎠⎟

η
ρ ρ

η
ρ

= − −  
De

Dt
e

p
u u· . (6)KE

KE
2 2

The combination of the first term on the left and right-hand side describe the convective
diffusion of kinetic energy. Such stress-energy diffusion is quite different from the GTF
predictions of stress-energy propagation found below using the fluid dynamical Poynting
theorem.

For completeness and to further introduce the tensor notation used in the paper, let us
develop the NSEs with the assumption of a symmetric viscous stress using cartesian tensor
notation. In this context, the newtonian viscous stress used in the NST is defined by
τ δ ησ= − +p 2 ˜ .ij ij ij If this ansatz is substituted into the Cauchy equation of motion (stress flux
balance equation [21]),

ρ τ ρ τ ρ= ∂
∂

+ = +Du

Dt x
g g , (7)

i ij

j
i

j
ij i
,

we obtain the Navier-Stokes equations [39]. The Cauchy equation of motion is derived in
terms of the balance of forces in the fluid. The Einstein summation convention is used:
repeated tensor indices are summed over. The comma-subscript-index denotes partial
differentiation with respect to the coordinate with the indicated index. The stress tensor

τ( )ij has the matrix representation

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟τ
τ τ τ
τ τ τ
τ τ τ

=( ) . (8)ij

11 12 13

21 22 23

31 32 33

Substituting equation (8) into equation (7), the Cauchy equations of motion can be written as

ρ τ τ τ ρ

ρ τ τ τ ρ

ρ τ τ τ ρ

= ∂
∂

+ ∂
∂

+ ∂
∂

+

= ∂
∂

+ ∂
∂

+ ∂
∂

+

= ∂
∂

+ ∂
∂

+ ∂
∂

+

Du

Dt x y z
g

Du

Dt x y z
g

Du

Dt x y z
g

,

,

. (9)

x xx xy xz
x

y yx yy yz
y

z zx zy zz
z

For cartesian tensor analysis there is no difference between covariant components (τ )ij and

contravariant components τ( ).ij This is generally not the case for curvilinear coordinate
systems. The covariant derivatives in cartesian coordinate systems are ordinary partial
derivatives denoted here by a comma [42, 43].

In order to generalize the equations to arbitrary coordinate systems the partial
differentials can be replaced by covariant derivatives leading to the equation [21]

ρ τ ρ τ δ ησ= + = − +Du

Dt
g p, 2 ˜ . (10)

i

j
ij i ij ij ij

;

The only notational difference in the first of these equations and equation (7) above is the
introduction of the semicolon on the right-hand side of the first equation indicating a covariant
derivative. The left-hand side of equation (7) includes part of the effects of the fluid inertia.
The equations describe a balance between the inertia flux and the newtonian stress flux due to
the symmetric part of the velocity gradients and the partial derivatives of the pressure. The
term ρgi represents the introduction of a body force to the problem. The use of the spatial
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covariant derivatives in equation (10) renders the form of the equation covariant with respect
to spatial coordinate system changes. However, the equations are not covariant with respect to
transformations between coordinate systems in relative motion if transverse mode
propagation at finite speed is included in the theory. The problem arises from the implicit
use of a galilean space time in which the time variable is completely unconnected from the
spatial coordinates.

2.2.3. Continuity Equation. The continuity equation is an axiom of both the NST and the
GTF. The continuity equation is usually solved along with the NSEs for incompressible flow
problems so that the pressure field can be determined. The conservation of currents has been
shown to imply the field equations of GTF, the vortex field equations, so it has a fundamental
dynamical role in that theory [2]. For both theories, the continuity equation can be written
using tensor notation as (μ = 0, 1, 2, 3)

∂ = ∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂

=μ
μJ

J

c t

J

x

J

y

J

z
0, (11)

m

x y z0

ρ ρ ρ ρ=μ ( )( )J c u u u, , , .m
x y z

The first term in this expression for current ρ=J cm
0 allows for compressibility. We notice

this rendition of the continuity equation treats spatial and temporal coordinates on an equal
footing. This facilitates the integration of the space and time coordinates into a single
spacetime geometry making it possible to develop a causal theory. In this form of the
continuity equation, one can consider cm to be present to rationalize the coordinates to length
units. This has the result of making all components of the current have the same units of mass
density × speed.

From equation (11), when the spatial components of the current vanish, there remains a
non-vanishing temporal component ρc .m This is the speed in the time-direction for the fluid at
rest: =J 0 andk ρ=J c .m

0 This quantity is also called the rest momentum density.
Equation (11), written using a cartesian coordinate system, takes the form

ρ ρ ρ ρ∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂

=
t

u

x

u

y

u

z
0 (12)

x y z

on cancelling the constant factor cm in the numerator and denominator of first term. This is the
form conventionally used in fluid dynamics.

We can also consider the continuity equation in terms of the effects of a displacement of
fluid at one point on the flow at another point. If current is to be conserved, its variation in one
region is a source (a cause) for a reaction flow (an effect) in other regions of the flow. Both the
energy and the momentum of the fluid flow are changed in both the source and in the other
regions. This is a global effect due to a local cause. These long range effects, of course, do
not occur at distant regions instantaneously. Thus the continuity equation constrains the
dynamics of the flow in a pervasive, global manner. It is exactly this restriction on the flow by
the continuity equation that requires the transverse modes [2].

2.2.4. Electromagnetic Lorentz force law and Poynting theorem. The Lorentz force law of
electrodynamics gives the force f density acting on an electrical charge density ρD moving at a
velocity u in the presence of an electric E and magnetic induction field B. It is stated in
cartesian coordinate component form as (In gaussian, c.g.s., units, [30, see p.781 modifying
section 6.7.]):
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⎜ ⎟⎛
⎝

⎞
⎠ρ= + ×f E

c
u B

1
( ) . (13)i

D
i i

In equation (13), c is the speed of light which is the upper limit or maximum speed (phase
velocity) of propagation of transverse electromagnetic waves in the medium. The charge
density ρD in electrodynamics is a conserved quantity satisfying a continuity equation. The

electrical current vector ρ ρ ρ ρ=μ( )J c u u u( , , , )D D D D
1 2 3 is a 4-vector also covariant under

Lorentz transformations. The covariance arises essentially from the fact that ρD counts the
number of charges in a unit volume.

For reference in the following discussion, we state Poyntingʼs theorem which gives the
differential form of the time-rate of change of energy and momentum due to an
electromagnetic field interacting with electrical currents :

 

 
π

π

∂
∂

+ = − ≡ ×

≡ + ≡


t

S S
c

E H

E D B H J E

· ,
4

( ),

1

8
( · · ), · . (14)

EMF
Joule

EMF Joule

Poyntingʼs theorem, the first of equation (14), states a differential form of the conservation of
energy. The quantity EMF is the density of energy stored in the electromagnetic field.
Poyntingʼs vector S defines the power flux: the energy crossing a unit area normal to the
direction of the field propagation per unit time. In the definition of the Poynting vector S, the
vector E is the electric field and H is the magnetic field. In the definition of the energy  ,EMF

the vector D is the electric displacement field and B is the magnetic induction field. The
current is denoted J. The quantity − > 0Joule is the rate at which energy-density is produced
by resistance heating.

2.2.5. Electrodynamics - fluid dynamics analogy. The fluid dynamical analog of the
electromagnetic field, the GTF fluid dynamical vortex field or vortex field for short, is
introduced in the beginning of this section. One expects such continuous physical systems to
be described by similar field equations. That this is the case for GTF and electromagnetic
theory (EMT) is shown in table 1 [2].

In table 1 the corresponding fields across the rows in the EMT and GTF columns are
analogous. The standard meanings associated with electrodynamics are to be applied in the
EMT column [30]. The field vectors with over-bars, ω̄ and ζ̄ , termed excitations, are the
response of the fluid to changes in ω or ζ , respectively. The quantities λ, κ, are linear
constitutive (material) parameters which can be determined from laboratory experiments
involving the generation and transmission of a fluid vortex field μν( )F whose governing

Table 1. The isomorphism derived between the field equations of electromagnetic
theory (EMT) and the field equations of the geometrodynamical theory of fluids (GTF).

EMT GTF

 · B = 0 (1)  · κ ω = 0
∂
∂

+ × =
c

B

t
E

1
0 (2) ω λ

κ
ζ∂

∂
+ × =

c t

1
0

m

πρ= D· 4 D (3) ζ π
ηλ

ρ= c· ¯ 4

¯ ¯ m

π− ∂
∂

+ × =
c

D

t
H

c
J

1 4
D (4) ζ κ

λ
ω π

ηλ
− ∂

∂
+ × =

c t
J

1 ¯ ¯
¯ ¯

4

¯ ¯m
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equations are introduced below. For water, we estimate κ ≈ 1, λ ≈ 0.01 (cm/s)−1 [4]. From an
experimental perspective, analysis of Whiteʼs data for the flow of water in helical flow guides
gives an estimated value of =c 150m m s−1 [22]. This value is many orders of magnitude
smaller than the value for the maximum speed of transverse waves c used in electrodynamics,
i.e., ≪ = ×c c 29.979 10m

9 cm s−1. The choice of which combination of the material
parameters η λ λ κ κ{ }c¯, ¯, , , ¯, m , of course, should be determined by a combination of
experimental methodology and theoretical considerations. For instance, for a linear
constitutive theory, the number of parameters can be reduced by dimensional analysis as
shown in the companion paper where we show the material constants κλ¯ ¯, κλ, and ηλ¯ ¯ can be
replaced by κ = 1, and ηλ = c¯ ¯ .m

In interpreting the GTF column of table 1, note we have chosen the nomenclature
‘vorticity’ and ‘swirl’ and the notation ω and ζ to distinguish these new fields from the older
Navier-Stokes fields of vorticity (pseudo-vector), denoted Ω = × u, and the Navier-Stokes
swirl or Lamb vector Λ Ω= × u. Physically, the GTF vorticity ω is similar to the NST
vorticity Ω = × u. The major difference in meaning between the two is the NST quantity
Ω is simply a mathematical transformation (taking the curl) of the velocity vector u. In
comparison, the GTF vorticity (pseudo-) vector ω introduces a new field and new physics to
the description of fluid flow whereas the NST quantity Ω does not. The GTF swirl ζ, also a
new (vector) field, is different from the Lamb vector Λ Ω= × u in that the Lamb vector is
similarly a derived quantity. From the analogy, the swirl field ζ can be expected to be
important for time-varying flows or compressible fluids. The swirl field ζ has the effect of
causing fluid flow to follow along its generally curved lines of force, no matter what the fluid
inertia might be, hence its name ‘swirl.’ In distinction to the NST variables, both ω and ζ are
elements of the second-order vortex field tensor μνF ; they describe the enhanced vortical and
swirling motion of fluid flow often observed in the experiment.

The similarities GTF and EMT are clear: both the fluid theory and the electrodynamical
one describe current flows defined over a 4D spacetime. In both theories, a continuity
equation ∂ =μ

μJ 0 is satisfied. For a strict analogy to exist, the spacetime must be of the same
mathematical structure. Since electrodynamics is formulated over a 4D Minkowski spacetime,
for a fruitful correspondence, the fluid dynamical theory must be formulated for an analogous
spacetime. The electrodynamical theory describes the evolution of a current J which is a 4-
vector defined over a hyperbolic spacetime with a maximum speed of transverse waves being
the speed of light c. That is, J is a 4-vector with one time and three spatial components. The
fluid analog for incompressible fluids is ρ=J c J J J( , , , )m0

1 2 3 in a cartesian coordinate
system. More generally, for compressible fluids, the current can be defined in terms of the
covariant derivative of the vortex field π=μ μν

νJ c F( /4 ) ; as shown in the companion paper
[1]. This definition renders the fluid dynamical current a cm-Lorentz covariant 4-vector. The
proof of this statement involves the introduction of the vortex field theory, in particular, what
we call the vortex field lemma (VFL, [2]). For speeds ≪u cm this definition limits to

ρ ρ ρ ρ=μ( )J c u u u( , , , ).m
1 2 3 Since cm has units of velocity, the units of ρcm and ρuk are the

same, so all components of J have the same units as required. Here we introduce coordinates
=μx x x x x( ) ( , , , )0 1 2 3 and describe the geometry using a metric tensor
= − − −μνg( ) diag(1, 1, 1, 1) in units where =c 1m

3. For cartesian coordinates;
=μx c t x y z( ) ( , , , ).m For simplicity, as in electrodynamics, theoretical expressions involving

cm are often written as if =c 1m .
To be causal theories, both electrodynamical and fluid dynamical field theories should be

defined over a 4D Minkowski spacetime. Limitations then exist on the kinds of fields that can

3 We follow the metric convention for matter fields of [21, 30], and [19]: = − − −μνg( ) diag(1, 1, 1, 1).
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play a part. Such field theories are limited to containing scalar, vectors, second order tensor,
pseudo-vector, and pseudo-scalar fields [19]. The scalar of electrodynamics is the charge
density ρ .D It is a scalar, and not a pseudo-scalar since it does not change sign if all spatial
coordinates are sign-reversed. We have just introduced the vector of the theory, the current J.
It is a product of a scalar and an ordinary vector, the velocity. Under coordinate reversals, the
current vector J changes sign. The distinction between vectors and pseudo-vectors also arises
from their transformations under reversals of spatial coordinate directions. In electrodynamics
the field = ×B A is not a vector, rather it is termed a pseudo-vector field since changing all
three spatial coordinates reverses the sign of both  and the vector potential A leaving the
sign of B unchanged. In electrodynamics, there is introduced the electromagnetic field tensor

μνF which is a second order tensor consisting of a vector part (the electric field E) and a
pseudo-vector part B, the magnetic field). The current vector J is responsible for the
generation of μνF [2].

To develop a fluid dynamical theory with this field structure, the fluid analog of the
electromagnetic field, the GTF vorticity ω- and swirl ζ- fields, are expressed in terms of a
pseudo-vector and a vector field. The vorticity ω and swirl ζ then become components of a
fluid vortex field tensor μνF . This tensor unifies vorticity ω and swirl ζ into a single second
order tensor quantity [2]. We have chosen the symbol for the vortex field tensor μνF to be the
same as that of the electromagnetic field tensor to emphasize the isomorphism of the fluid
vortex field equations to the electromagnetic field equations. (See equations (15)–(16)) and
table 1 above.)

The analogy can be cast into a simple form as a linear one-to-one map between the
variables of one theory to those of another. For a cartesian coordinate system, the analogy
consists of identifying the electromagnetic field components (E B, ) of μνF with the fluid
vortex field components (ζ ω, ) of the fluid μνF as follows

λζ λζ λζ
κω κω κω

≃ ≃ ≃
≃ ≃ ≃

E E E

B B B

, , ,

, , . (15)
x x y y z z

x x y y z z

This arrangement states a linear one-to-one mapping between the two sets of fields. The
analogy between the GTF and EMT can be displayed succinctly by the map between the
vortex field components:

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

λζ λζ λζ
λζ κω κω
λζ κω κω
λζ κω κω

=
− −
− −
− −

≃
− −
− −
− −

μν( )F

E E E

E B B

E B B

E B B

0

0

0

0

0

0

0

0

(16)

x y z

x z y

y z x

z y x

x y z

x z y

y z x

z y x

Here the μ ν( , )th element of μν( )F on the left is analogous to the corresponding element on the
right-hand side for the cartesian coordinate system. As explained above, the GTF fields ω and
ζ on the right are new to fluid dynamical theory. Physically, they account for additional
modes of storage and transmission of energy and momentum in the fluid. The fact μν( )F is a
second-order tensor implies the (E B, )-field pair and analogously the (ζ ω, )-field pair are each
interrelated. The (ζ ω, )-fields are generated by the flow of the fluid in exactly the same
(mathematical) way the (E B, )-fields are generated by the ‘flow’ of electrical current [2].
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3. Fluid Dynamical Lorentz Force Law and Poynting Theorem

Having explained the analogy presented in equation (16) or table 1, we are ready to apply it to
the electrodynamical Lorentz force law, equation (13). The fluid dynamical analog of the
Lorentz force (density) law is then found:

⎛
⎝⎜

⎞
⎠⎟λ ζ κ ω λζ κ ω= + × = + ×f J J J

c
u( ) ( ) . (17)i i i i

m

i
0 0

Here ρ=J cm0 and in the second equation we use ρ=J u ,i i a relation valid for ≪u cm. In
electromagnetic theory, the Lorentz force can be derived from the stress-energy flux of the
electromagnetic field. By comparing the expression for the fluid Lorentz force above to the
electromagnetic case given in equation (13) suggests the constant κ can be set to unity. The
significance of the Lorentz force generated by the transverse wave modes is that it contributes
to the balance of stress-energy flux of a continuum [2].

The swirl field ζ produces a force-density λ ζ=f Ji i
0 impelling fluid particles to move

along (or rotate about and translate along if ω ≠ 0) the ζ field lines. We find the units
λ = T L[ ] , so in terms of units λ =[ ]c 1,m i.e., λcm is unitless. Thus, the fluid dynamical ρ
corresponds to the electromagnetic charge density. In analogy to the electrodynamical case
where a steady, uniform charge density creates a constant background electric field, the
average fluid density is responsible for a steady, longitudinal ζ-mode of the vortex field.

Nonlinear effects originate from several sources. For a compressible fluid, the term
ρ=J cm0 is spatially and temporally varying, so the product λ ζJ i

0 of the constitutive
parameter λ with J ,0 and the swirl components ζi makes a nonlinear contribution to the force
acting on fluid elements. This variation is a source for the swirl field ζi in the first term λ ζJ i

0

on the right-hand side. For an incompressible flow J0 is a constant, so this nonlinear effect is
absent. The second term in equation (17) κ ω×J( )i describes a nonlinear interaction of the
current with the vorticity field ω. This term couples the fluid current J nonlinearly, because of
the cross product ω×u of the velocity u with the vortex field vorticity ω. This determines a
functional dependence of the vorticity on the velocity, denoted by ⎡⎣ ⎤⎦ω u .i Consequently, the

term ω×J( )i in the field equations for the velocity produces a non-linear velocity-velocity
interaction. Such nonlinearities allow one mode to interact with another mode, i.e., allow
mode coupling. (Another source of nonlinearity in fluid flow is the directional derivative term,

u u· ,i in the balance of stress-energy flux equations.) The second term in equation (17)
causes fluid particles to orbit the vorticity ω field lines.

Applying the analogy presented in equation (15) to equation(17), we obtain the fluid
dynamical Poynting theorem:



⎜ ⎟

⃗

⎛
⎝

⎞
⎠

λ ζ

η
π

λζ κω η
π

λ ζ κ ω

∂
∂

+ = −

= × = +



( )
t

S c J

S
c

· · ,

¯

4
( ) ,

¯
8

. (18)

m

i m i 2 2 2 2

Here the Si are components of the fluid dynamical Poynting vector and  is the energy-density
of the fluid vortex field. (Analysis of the companion paper [1] shows the Poynting vector is
actually not a 4-vector, since ⃗S is composed of the time components of a second-order
tensor.) According to the second part of equation (18), the Poynting vector is orthogonal
(transverse) to the vorticity and swirl. The expression for  given here is the for a transverse
wave field. The first of equation (18) describes the balance of energy-momentum flux. To see
this, let us divide the equation by cm:
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 ⃗ λ ζ∂
∂

+ = −
c t c

S J
1

· · , (19)
m m

Equation (18) gives an energy-density representation. Since ⃗S is an energy density, dividing
it by cm gives a momentum density so equation (19) involves a energy-momentum 4-vector.
Then consider this energy-momentum 4-vector ≡Sc  ⃗ =S c S S S S( , ) ( , , , )m

0 1 2 3 . Using the
tensor notation for a 4D spacetime introduced above, we can express the Poynting theorem as
the 4-divergence ∑ ∂μ μ

μ
= Sc0

3 of the vortex field energy-momentum vector. Then, for a unit
volume ∂μ

μSc is equal to the work per unit time (power) done by the swirl field on the current
λ ζ− J · . Thus, as in electrodynamics, the Poynting theorem describes the transfer of energy-

momentum. The term λ ζ− J · is seen to be a maximum when the swirl field ζ is aligned
parallel to the current J. This maximum occurs when the current slides along the swirl field.
The analogous term for the electromagnetic field is the term to the right-hand side of
equation (19), −J E· . This is the density of electrical power dissipated by the Lorentz force
acting on the (electrical) current. It gives the ‘resistive’ energy losses. (So-called I R2 losses
leading to Joule heating.) In the fluid case, this energy loss is termed a loss due to frictional
forces. Thus, by analogy, the term λ ζ− J · can be interpreted as providing energy dissipation
identical to that ascribed to the newtonian viscous stresses η ρ  u( )0

2 due to fluid elements
sliding past one another. For example, suppose ζ is a longitudinal field down a flow guide
causing a steady flow. Then λ ζ λρ ζ=J u· ·0 gives the energy dissipation reflecting the
velocity profile u to the same extent as the viscous dissipation defined by the Navier-Stokes
equations.

By writing the fluid dynamical Poynting theorem as

 ⃗λ ζ∂
∂

= − − 
t

c J S· · , (20)m

it is seen the energy density dissipation rate of the vortex field consists of an energy density
loss rate -λ ζc J ·m creating heat and an energy flux loss rate - ⃗ S· or momentum flux
- ⃗ S c· m. Using Stokes’ theorem and the non-slip boundary condition, the integral of the
momentum transfer over a section of a flow guide reduces to a quantity proportional to the
difference between the outlet and inlet values of ⃗S projected onto the flow guide cross
section:

⃗ ⃗ ⃗ ⃗∫ ∫= −
∂

 ( )d x S S S dA· · . (21)
M M

out in
3

3 3

The momentum transfer ⃗ ⃗−( )S S cout in m is experimentally measurable in terms of the force
that must be applied to the flow guide to keep it stationary. The excitation of a new vortex
field mode would change this force. Again this is an experimentally measurable effect. The
change in energy is given by

 ⃗ ⃗ ⃗∫ ∫ ∫λ ζ− = + −
∂ ( )d

dt
d x c J d x S S dA· · (22)

M M
m

M
out in

3 3
3 3 3

This shows the total change in energy also includes a dissipative part ζJ · .
In summary, the viscous stress used in the NSEs can be said to lead to a kinetic energy

dissipation channel. The results of equations (20)–(22) then introduce new channels of
energy-momentum propagation and dissipation due to transverse fluid flow modes replacing
the newtonian viscous stress channel. Thus “viscosity” and energy-dissipation has not been
eliminated. They have reappeared in another form described by the Poynting theorem
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4. Consequences

In this section the combined GTF equations are given for the low speed limit ≪u c 1m .
We have argued that the Poynting theorem accounts for the stress-energy propagation and
dissipation in a viscous fluid. For simplicity, we consider the constant density, small flow
speed limit (relative to the maximum transverse mode speed c ,m i.e., ≪u c 1m ) of the
stress-flux balance. This limit yields the following set of equations for the velocity field
components ui for an incompressible fluid [4, 21]

ρ
η
ρ

+ =  u u p u·
1

, (23)i i i2

ρ
λ ζ κ ω∂

∂
+ + = + × 

u

t
u u p c u·

1
( ) , (24)

i
i i

m
i i

ω ω λ
κ

ζ

ζ πρ ζ κ
λ

ω π

= ∂
∂

+ × =

= − ∂
∂

+ × =

 

 

c t

c t c
J

· 0,
1

0,

· ¯ 4 ,
1 ¯ ¯

¯ ¯
4

. (25)

m

m m

Equation (23) gives the equation of stress-balance for time-independent flow from the Navier-
Stokes equations. For time-independent flows, there is no acausality concern with action-at-a-
distance. The solutions of the time-independent NSEs can be obtained for any time without
reference to the flow at any other time—solutions at any time are identical. For such time-
independent flows equation (23) can be non-dimensionalized so the right-hand side takes the
well-known form −  uRe i1

*
2

*
where η ρ= ULRe ( ) where U is a characteristic velocity of the

flow and L a characteristic length scale; μ η ρ= is the kinematic viscosity. As Re increases
without bound, the newtonian viscous stresses become increasingly inconsequential
compared to the inertial terms on the left-hand side. In this régime, the inertial forces have
no counterbalance. Equation (23) is clearly limited to low Re, time-independent flow. In
equation (25), the excitations (ω̄, ζ̄ ) are related to the vortex fields (ω ζ, ) via constitutive

relations: ω λ ω= −¯ ¯ ,1 ζ λλ ζ= −( )¯ ¯ ,1 with κλ κλ=c ¯ ¯ .m
2

For the GTF, on the other hand, equation (24) shows the Lorentz force =f i ν
νF Ji

counterbalances the inertial force. The Lorentz force term leads to enhanced mixing and
stress-energy transport (via convection, vortex field excitation, and propagation) in the fluid
compared to the NST. Stress-energy dissipation is also enhanced according to the Poynting
theorem because of the ‘Joule’ heating term λ ζJ · . The left-hand side of equation (24) is
obtained from the inertial stress-energy in the low speed limit ≪u c 1m as described in
[21]. An important point is the pressure term ρ−  pi1 is considered as part of the inertial
forces of the fluid in GTF. This arises from the computation of the total stress-energy of the
fluid. The term η ρ−  u( ) i2 due to newtonian viscous stresses in equation (23) is omitted in
equation (24) as required to avoid acausality. The covariant 4-current J exciting the vortex
fields is obtained from the vortex field as π η≡μ μν

ν
−J F(4 ) ¯ ;1 . This current has to be deter-

mined simultaneously from the set of equations (24), (25). For higher speed flows the full
theory described in the companion paper is required.
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5. Summary and conclusions

This paper provides a physically motivated introduction to the fluid dynamical Lorentz force
and Poynting theorem and a description of how they fit into the larger problem of devising a
covariant, causal field theory of fluid flow. The exposition is based on the isomorphism of the
fluid dynamical and eletrodynamical vortex field equations proven in the companion paper
[1]. This allows the introduction of a fluid dynamical/electrodynamical analogy. First we give
an analysis of the Navier-Stokes theory (NST). We show the NST is an acausal theory
supporting action-at-a-distance with infinite speeds of propagation of velocity disturbances.
This is characteristic of physical theories formulated for galilean spacetimes. The newtonian
viscous stress term is the source of the physical acausality; mathematically, the newtonian
viscous stresses introduces the galilean spacetime rendering the NSEs as parabolic partial
differential equations. The parabolicity leads to the infinite speeds of velocity disturbance
propagation typical of the (parabolic) diffusion equation. Experimental evidence is cited
showing the maximum speed of transverse mode propagation cm in fluid flow is, in fact,
substantially less than the speed of light.

The new geometrodynamical theory of fluids (GTF), through the aegis of the Poynting
theorem, demonstrates the existence of new channels of energy-dissipation and transport that
can account, for instance, for the large increase of energy-dissipation measured in helical
flows on excitation of transverse flow modes. The Lorentz force for fluid dynamics provides a
physical description of the excitation of these transverse modes.

The GTF solves the acausality and speed problems of the NST by introducing a Min-
kowski spacetime with a finite maximum speed of propagation c .m This replaces the galilean
spacetime used for the NST where the speed of propagation is infinite. The GTF solves the
problem of anomalous stress-energy dissipation by introducing new avenues of stress-energy
propagation and dissipation that are described by the fluid dynamical Lorenz force and by the
fluid dynamical Poynting theorem, respectively. The Lorentz force induces new modes of
flow associated with the sliding of fluid lamella past one-another. This leads to energy-
dissipation analogous to Joule heating in electrodynamics described by the Poynting theorem.
The fluid dynamical Lorentz force depends on the fluid GTF vorticity ω and GTF swirl ζ
fields in the same way as the electrodynamical one depends on the magnetic B and electric E
fields. Together the ω and ζ fields constitute the independent components of the fluid vortex
field tensor, the analog of the electromagnetic field tensor μνF .

Within the GTF, a covariant 4-vector current based on the vortex field is defined. The
resulting theory is cm-Lorentz covariant, meaning the equations describing the fluid flow are
invariant under spacetime transformations keeping cm constant for fluids and observers in
relative motion. The theory is not restricted to small flow speeds: as the flow speed increases,
the inertial forces remain in balance with the fluid dynamical Lorentz forces. This leads to
increased stress-energy dissipation; this is unlike the case of the NST where inertial forces
become unbalanced as the newtonian viscous stresses become relatively small, as the flow
speed increases.

For lower speeds satisfying ≪u c ,m we introduce the stress-energy flux balance
equations to relate these results. These equations resemble the Navier-Stokes equations in that
the forces due to the inertial stress-energy are present. However, the force due to newtonian
viscous stress is replaced by the Lorentz force for time-dependent flows. This strikes a new
stress-energy flux balance for describing dissipative fluid flow. Our results are rigorously
derived in the companion paper [1].

Examples are also cited of fluid vortex field modes observed in experiment and compared
to their electromagnetic analogs. Because helically curved flow guides limit the wavelength of
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the vortex field modes and their (maximum phase) speed of propagation, such guides can be
usefully employed to experimentally determine the constitutive parameters and wave speeds
of the fluid vortex field. Measurement of the mode structure, mode amplitude, energy-dis-
sipation, and comparison to theory can be used to obtain the constitutive parameters and their
frequency and wave vector dependence. The present theory and future experiments are
expected to improve the description of time-dependent and turbulent flows where stream
tubes of curved geometry are prevalent.
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