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Abstract
Fluid dynamical analogs of the electrodynamical Lorentz force law and
Poynting theorem are derived and their implications analyzed. The companion
paper by Scofield and Huq 2014 Fluid. Dyn. Res. 46 055513 gives a heuristic
introduction to the present results. The fluid dynamical analogs are con-
sequences of a new causal, covariant, geometrodynamical theory of fluids
(GTF). Compared to the Navier–Stokes theory, GTF shows the existence of
new causal channels of stress-energy propagation and dissipation due to the
action of transverse modes of flow. These channels describe energy-dissipa-
tion and transport along curved stream tubes common in turbulent flows.

1. Introduction

This paper presents a rigorous derivation of the fluid dynamical Lorentz force law, the fluid
dynamical Poynting theorem, and an analysis of their implications for the theory of fluids. In
so doing, this paper describes a solution to the problem of formulating a covariant, causal
theory of time-dependent fluid flow [2]. This theory is called the geometrodynamical theory
of fluid flow (GTF, [3]). From the GTF equations we derive the fluid dynamical Poynting
theorem for the transfer of stress-energy. This shows the stress-energy transfer occurs via
finite-speed transverse modes. These modes are excited by the fluid dynamical Lorentz force.
The modes lead to new channels of stress-energy dissipation absent from the Navier-Stokes
theory. The companion paper [1], provides a heuristic introduction to the Lorentz force law
and Poynting theorem using an analogy to electromagnetic theory [4] for expository purposes.
Previously, such electrodynamical analogies have been used to better understand time-
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dependent flow; in particular in [5–7] and more recently by Kambe [8]. Kambeʼs work is to be
noted for its rigor and for its introduction of a gauge theoretic perspective into such analogies
[9]. The present work differs from these since it is not based on analogy; as we show, it is
based on the mathematical consequences of the GTF equations [3]. The theory can describe
time-dependent, high speed flows for which inertial forces are balanced by Lorentz forces
along with enhanced stress-energy dissipation without the introduction of eddy viscosity.

The present paper is organized as follows. The background summarizes the physical
basis of the theory developed in the companion paper and compares it to the isomorphic
theory of electromagnetism. We then derive the fluid dynamical Lorentz force and Poynting
theorems from the fluid dynamical vortex field tensor, the fluid dynamical analog of the
electromagnetic field tensor. The consequences of the Lorentz force and Poynting theorems
are then developed by formulating the whole set of geometrodynamical theory of fluids (GTF)
equations. This is followed by an analysis of the inclusion of the newtonian viscous stresses
to assess how these stresses compare to the new channels of stress-energy provided by the
vortex field. A summary and conclusion section follows. The first appendix gives the defi-
nitions of the tensors used in the formal derivations. The second appendix shows the for-
mulation presented here can be expressed in a way that the GTF vorticity ω and swirl ζ fields
have the same units as the vorticity Ω = × u and Lamb Λ Ω= × u vectors have in the
Navier-Stokes theory (NST).

2. Background

In the companion paper we show the need to revisit the foundations of fluid mechanics arises
from complications due to the Navier-Stokes equations being parabolic partial differential
equations (PDEs) rather than being cm-Lorentz covariant hyperbolic PDEs. Their diffusion
equation formulation, with an attendant infinite speed of velocity propagation, implies action-
at-a-distance, a formulation that is termed acausal. On the other hand, a finite speed of
propagation of signals allows causes and effects at any field point to be sequentially ordered
by arrival time. An infinite speed of propagations leads causes and effects to be simultaneous.
In the companion paper we discuss the fact the Navier-Stokes equations (NSEs, [2]) are
acausal. The NSEs embody action-at-a-distance where all causes arrive from infinitely distant
places simultaneously but they are not non-causal where effects can precede causes. This
action-at-a-distance is a characteristic of newtonian physics where the speed of all signal
propagation is infinite. We also point out for time independent flows, because there is no
change, that there is no propagation at any speed. In this case, the Navier-Stokes equations
reduce to elliptic PDEs having laminar flow solutions.

The problems of the non-relativistic NSEs extend to the relativistic formulation of fluid
dynamics given by Landau and Lifshitz [2]. Their fluid theory is an example of a covariant,
acausal theory holding the speed of light c constant. It is presently the standard theory of
relativistic fluids. The acausality of this theory [10] has been discussed extensively
[11–17, 19]. This analysis concludes, given there was no alternative theory at the time, that
the Landau and Lifshitz formulation was adequate as long as the fluid could relax sufficiently
fast enough to mask the acausality. This work also shows a finite speed of wave propagation
is a necessary (but not sufficient) ingredient of causal theories.

The geometrodynamical theory of fluids (GTF) given in [3] shows it is possible to avoid
these shortcomings by using a theory based on the geometrodynamics of current conserving
spacetimes with finite speeds of transverse wave propagation. The GTF introduces Lorentz
forces and Poynting theorems for both fluid dynamics and electrodynamics. In the companion
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paper we describe the resulting, causal theory of fluid mechanics (GTF) by relating it to the
analogous theory of electromagnetism (EMT). Each of these theories respect a maximum
speed of wave propagation that depends on the material medium. Both theories are causal
theories and can be expressed in a covariant form where the basic equations of the theory are
form invariant under transformations of coordinates. Both are also Lorentz-covariant,
meaning the form of the equations are invariant with respect to transformations of the
spacetime coordinates even including coordinate systems moving at constant relative speeds
to the flow. Both theories involve covariant 4-currents. We describe the calculation of the
fluid 4-current in this paper.

Integral to the GTF theory is the existence of a maximum speed of transverse waves,
denoted cm and two other phenomenological constitutive parameters that we discuss in the
next section. For a fluid continuum a finite speed of propagation is also required to escape the
conundrum of newtonian physics action-at-a-distance and infinite speeds of transverse mode
propagation characteristic of the NST. Avoiding this problem is required if one is to con-
sistently combine transverse mode propagation (fluid dynamical Lorentz forces) and covariant
stress-energy flux balance. Experimental measurements show the maximum speeds of fluid
dynamical waves cm is of an order 10−5 times smaller than the maximum speed of propagation
of light waves in empty space, the speed of light = × −c 2.9979 10 m s8 1, [20–22]. Because
of this limitation, the geometry of the spacetime required for fluids acting under a fluid vortex
field must employ the smaller by ×−10 5 speed of propagation. The questions raised by the
analysis of [11–19], then implies relaxation times are no longer relatively short, so an
alternative theory to the relativistic NST of [2] needs to be formulated (e.g., GTF).

In summary, causality is physically related to the existence of a maximum speed of signal
propagation and mathematically to the use of hyperbolic, second-order wave equations with a
single time-like variable. In a sense, it is remarkable that finite speed of signal propagation,
causality, and spacetime geometries are so intimately related. In the following parts of this
paper, by introducing a finite speed of propagation c ,m a covariant, causal theory of fluids is
formulated that is expressible in terms of hyperbolic wave equations and covariant stress-
energy flux balance, —the GTF theory. This enables the derivation of fluid dynamical Lor-
entz forces and energy transport described by Poyntingʼs theorem.

2.1. Vortex Field Equations

Causal theories such as electrodynamics address the foundational problems of the propagation
of stress and energy in a continuum. They require a finite speed of propagation. This allows
the concept of ‘transport’ of causes to effects to be meaningfully defined. In this we can
include in ‘transport’ a combination of convection and propagation. The vortex field
equations introduced immediately below are causal equations formingg part of the GTF. As
explained in the companion paper, these equations allow one to describe the propagation, not
acausal diffusion, of the velocity, vorticity, and swirl fields contributing to the stress-energy
flux balance in a fluid. In the remainder of this section, we will give a synopsis of the vortex
field equations and the terms used to describe the balance of stress-energy flux in a cm-
spacetime. The basic result is the following:

Theorem 1. Vortex Field Equations (VFEs, Scofield-Huq, [3]). Consider a simply
connected 4D cm-ST manifold and a homogeneous, isotropic fluid having a linear constitutive
relation between its vortex field ζ ωF ( , ) and its excitations H(ζ ω¯ ¯, ), =κλ κλ

μν
μνH C F . Then the

conservation of the 4-current J for homogeneous isotropic media implies the
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geometrodynamical theory of fluid (GTF) vortex field equations and an isomorphism with
electromagnetic theory (EMT) as displayed in table 1.

The isomorphism given in table 1 illustrates the profound consequences of the con-
servation of currents [3]; the physical currents in EMT and GTF are quite different, yet they
obey isomorphic vortex field equations. Table 1 illustrates the physical theory analogy.
However, the correspondence is deeper. Both EMT and GTF are derived from the vortex field
lemma, a consequence of the conservation of currents (electrical and fluid, respectively). Here
ρD is the electrical charge density and JD is the electrical current, the electric field vector is
denoted by E and the magnetic field vector by B. Their excitation fields are the vectors D and
H. The parameters κλ

μνC in the theorem statement are linear constitutive (material) parameters
of the vortex fields—different from the viscosity parameters of the NST. They relate the
vortex field strength ζ ωF ( , ) to its ‘excitations’ ζ ω¯ ¯H ( , ) in the same way the field strengths
F E B( , ) and excitations H(D H, ) are related in electrodynamics [23]. (See ref. [4, section
6.8–9] for the analogous case where lossy electromagnetic media is also considered.) The
excitations ζ ω¯ ¯H ( , ) are related to the fields ζ ωF ( , ) in that the excitations are the response of
the system to field variations. The excitations of the vorticity ω and swirl ζ fields are denoted
with an over-bar ζ ω¯ ¯( , ). The ζ ω¯ ¯( , ) are not ‘fluctuations’ about a mean. Thus these quantities
are not directly related to the Reynolds decomposition of mean quantities compared to their
perturbations often used in the analysis of turbulent flow. The variation of the density ρ
allows one to define the quantity δρ ρ ρ= − avg as the fluid density fluctuation about the
average value, ρavg; it is also not a Reynolds decomposition. The spatial current components
are given by ρ=J ui i. In the absence of longitudinal fields due to ρavg so ζ δρ· ¯ = = 0,
there is still an analog of the electrical displacement field ζ≃ ¯D( ) whose time variation ζ∂ ¯ ∂t
produces a curl of the analog of the vorticity excitation − λ ζ¯ ∂ ¯

∂c tm
+κ ω¯ × ¯ = π

η̄
 J.4

Transverse waves are predicted by the equations of table 1 given appropriate geometric
constraints as in electrodynamics [1–4]. For instance, transverse vorticity (TV) waves are
predicted by solving these equations for flow along flow guides of constant cross-section and
vanishing velocity along the walls of the guide. Transverse swirl (TS) waves have swirl
components transverse to the direction of propagation. Transverse vorticity-swirl (TVS)
waves are predicted for propagation in unbounded media. These TV, TS and TVS modes
correspond to the TM, TE and TEM modes of electrodynamics, respectively.

The GTF formulation given in table 1 is general so that we can flexibly determine the
physical units and constitutive relations depending on experimental methodology and theo-
retical requirements. Using the flexibility of four constitutive parameters, in appendix B, we
show the equations can be simplified using dimensional analysis so only a total of three

Table 1. The isomorphism derived between the vortex field equations of electro-
magnetic theory (EMT) and geometrodynamical theory of fluids (GTF).

EMT GTF

· = B 0 (1) κω· = 0
∂
∂

+ × =
c

B

t
E

1
0

(2) ω λ
κ

ζ∂
∂

+ × =
c t

1
0

m

πρ· = D 4 D (3) ζ π
ηλ

ρ· ¯ =
¯ ¯ c
4

m

π− ∂
∂

+ × =
c

D

t
H

c
J

1 4
D

(4) ζ κ
λ

ω π
ηλ

− ∂ ¯
∂

+ × ¯
¯ ¯ =

¯ ¯
c t

J
1 4

m
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material parameters are needed for the whole set of equations by choosing the units of GTF
vorticity ω and swirl ζ to have the same units as the corresponding quantities appearing in the
Navier-Stokes theory Ω = × u and Λ Ω= × u. This allows direct comparison of results of
the GTF with the NST field variable pairs ω ζ( , ) and Ω Λ( , ). We show, one can consistently
set κ = 1 and λη¯ ¯ = c .m This results in κλλ= ¯ ¯−c 1 ( )m

2 1 and the elimination of the quantity η̄
scaling the coupling of the fluid current to the fluid vortex field. The minimal set equations are
given in equation (B.10) of appendix B.

From our understanding of EMT (electrodynamical vortex field equations), we can
ascertain some of the physical meaning of the GTF equations in table 1 (fluid dynamical
vortex field equations). First ζ ω( , ) and ζ ω¯ ¯( , ) represent the fields and their linear excitations
[23]. Second, as shown immediately below, the fields satisfy second-order vector wave
equations sourced by the fluid current and density fluctuations. The solution of these
equations leads to the introduction of transverse and longitudinal modes of flow exactly
analogous to those of electrodynamics. The analogy derived from the vortex field lemma
(VFL, see appendix A.) can be neatly arranged in terms of an equivalence of the electro-
magnetic μν( )F and the fluid μν( )F matrices (metric = − − −μνg( ) diag(1, 1, 1, 1) using
‘theoretical’ units where c = 1 and =c 1m ):

λζ λζ λζ
λζ κω κω
λζ κω κω
λζ κω κω

=
− −
− −
− −

≊
− −
− −
− −

μν

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( )F

E E E

E B B

E B B

E B B

0

0

0

0

0

0

0

0

(1)

x y z

x z y

y z x

z y x

x y z

x z y

y z x

z y x

The VFEs of table 1, show the 4-vector current ρ=μJ c J J J( ) ( , , , )m
x y z is the source

driving the excitation of the vorticity and swirl components of the vortex field μνF . Mixed
Dirichlet–Neumann boundary conditions can be used: specifying values for ζ and normal
derivatives of ω on boundaries, in solving the field equations. Overall, the units are chosen so
that ω and ζ have the same units as the NST quantities Ω and Λ: ω = −T[ ] 1, ζ = −LT[ ] .2

Furthermore, =J M L T[ ] ,2 and λ κ= =−TL[ ] , [ ] 1.1 We also have η = =M LT ET L[ ] [ ] 3

and η η¯ = =M L T[ ] [ ] [ ] , and = =A L T u[ ] [ ]. By using the definition of μνF given above
and by algebraic manipulations, we find the following corollary.

Corollary 2. The tensor expression of the GTF vortex field equations of theorem 7 are given
by μ ν =( , 0, 1, 2, 3)

= − =ν
μν

ν
νμ π

η
μ

¯
F F J , (2); ;

4

∂ + ∂ + ∂ =α βμ μ αβ β μαF F F 0, (3)

By taking the curl and by algebraic manipulations of the GTF equations of table 1, we
find the following two corollaries. These two corollaries are directly related to the propagation
of the GTF vorticity and swirl. Corollary 3 shows how the NST vorticity Ω is a source for the
GTF vorticity ω, for incompressible fluids, and how the time-rate of change of the current
∂ ∂J t is a source exciting the GTF swirl field. Corollary 4 is obtained by using the definition
of μνF and the result □ = − ∂ − ∂μν

π
η μ ν ν μ¯ ( )F J J4 to show the 4-vector potential A can be used

to determine ω and ζ.
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Corollary 3. The GTF vortex field equations in table 1 imply the following vector wave
equations relating the vorticity and swirl fields to the current J and density ρ of the fluid

ω π
η

∂
∂

− =
¯

×
⎛
⎝⎜

⎞
⎠⎟ 

c t
J

4
, (4)

m

2

2 2
2

ζ π
ηλ

π
λη

ρ∂
∂

− = −
¯

∂
∂

+
¯

⎛
⎝⎜

⎞
⎠⎟ 

c t c

J

t

c4 4
. (5)

m m

m
2

2 2
2

Here κλ κλ= ¯ ¯c .m
2

For incompressible fluids of constant density ρΩ× = J , equation (4) shows the NST
vorticity Ω is the source of the GTF vorticity field ω. For constant density, ρ = 0, so the last
term on the right-hand side of equation (5) vanishes. Thus for incompressible fluids, the time
rate of change of the NST vorticity Ω is the source for the GTF swirl field ζ . In this corollary
we notice the maximum speed of propagation cm is determined by the material parameters.

Corollary 4. The swirl ζ and vorticity ω components of the vortex field tensor ζ ωμνF ( , ) can
be obtained in terms of a 4-component gauge potential Φ=μ( )A A( , )i which satisfies a
vector wave equation μ =( 0, 1, 2, 3)

π
η

∂
∂

− =
¯

μ μ
⎛
⎝⎜

⎞
⎠⎟

c t
A J

4
. (6)

m

2

2 2
2

Here the Lorenz gauge condition ∂ =μ
μA 0 is used. This equation is often written as

□ =μ π
η

μ
¯

A J ,4 where □ ≡ ∂ − ( ).t
2 2

The vector potential does not add new degrees of freedom to the theory. In fact, it allows
the six linearly independent components of the vortex field of the antisymmetric field tensor

μνF to be computed from four quantities μ( )A simply by differentiation: = ∂ − ∂μν μ ν ν μF A A( ).
From equation (6), one can show the vortex field tensor μνF also satisfies a wave equation:
□ = ∂ − ∂μν

π
η μ ν ν μ¯ ( )F J J .4 Using the definition of ζ ωμνF ( , ) given in equation (1), allows one

to determine the GTF vorticity ω and swirl ζ fields. Solution of equation (6) is thus equivalent
to the solution of the vortex field equations of table 1.

These corollaries show how the gauge potential 4-vector μ( )A is sourced by the current
μ( )J and how ζ ω( , ) are obtained from the gauge potential and the current 4-vector. The

isomorphism between electromagnetic field theory [4] and vortex field theory is readily
apparent: the equations for electrodynamical vortex field are of the exact same form as for the
fluid dynamical vortex field [3]. Equations (1), providing a formal, linear, invertible (hence 1
to 1) mapping between the electromagnetic field tensor and the fluid dynamical vortex field
tensor, can be seen to be a logical consequence of theorem 1. The analogy (isomorphism)
also shows the vortex field equations can be expressed as gauge field equations for the vector
potential components μA in the same way as in electrodynamics (corollary 4). As shown in
corollarys 3 and 4, the theory yields second order wave equations forr which there is an finite
limit to the mode propagation speed cm.

Equations (6) can be solved to determine the transverse modes, for instance, for flows in
circular, rectangular or helical pipes. The consequences of being able to compute such modes
and categorize the modal structure (topology) of fluid flow are far-reaching. A theory of
helicity and the topology of inviscid or perfect fluid flows has already been developed based
on an electrodynamic analogy [24–27]. That theory provides a description of helical
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structures for perfect fluids. Using the present theory, GTF, the limitation to perfect fluids is
removed in the context of the NSEs [28, 29]. As a consequence, the work on the topology of
perfect fluid flow, e.g., summarized in references [30] and [31], can be derived from GTF
thereby providing an extension of the perfect fluid topology theory to a viscous fluid topology
theory. Such topological quantities are crucial for understanding and predicting propagation
and dissipation of stress-energy in flows with transverse mode structures. Thus there now
exists a machinery for computing the vortex field, ζ ω = ∂ − ∂μν μ ν μ νF A A( , ) , just as in
electrodynamics. The vortex field, of course, produces stresses and propagates energy in the
fluid. These effects must be included in the stress-energy flux balance.

3. Deriving the fluid dynamical Lorentz force law and Poynting theorems

In this section, we derive the fluid dynamical Lorentz force law and the Poynting theorem. In
appendix A we give the detailed definitions of the tensors involved in our discussion. Our
formulation of the balance of stress-energy flux is based on the one given in [2].

Tensor analytic methods for a 4D cm-spacetime are used in the remainder of this paper.
We follow the conventional notation: subscripts indicate covariant components. Superscripts
denote contravariant components. For a vector of covariant components μJ , the same vector
expressed in terms of contravariant components is given by =μ μν

νJ g J , where the Einstein
convention of summing over repeated covariant-contravariant index pairs is used. Greek
letter indices vary over {0, 1, 2, 3}. Roman letter ones vary over 1, 2, 3. The metric tensor
has components given by = − − −μνg( ) diag(1, 1, 1, 1) in units where =c 1m , thereby
defining the geometry of a Minkowski spacetime. The formulated equations are covariant in
form with respect to Lorentz transformations in which cm is held constant. This is called cm-
Lorentz covariance. This covariance follows from the isomorphism of the VFEs and Max-
wellʼs equations, the latter being c-Lorentz covariant as the maximum speed of transverse
waves is the speed of light c. The use of this Minkowski spacetime forms the basis for
preserving causal ordering. A cm-covariant theory can be developed on this basis.3 The
covariant (cm-ST) derivative is denoted by a semi-colon and a subscript. For the present
discussion these covariant derivatives are equivalent to partial derivatives if cartesian coor-
dinates are adopted. The 4D spacetime tensor approach is both simpler and more elegant
compared to the (3+1)D formulation used in table 1 and simplifies the derivations of the
Lorentz force law and Poyntingʼs theorem.

3.1. Fluid dynamical Lorentz force law

In this and the following, section we attend to the rigorous derivations of the Lorentz force
and the Poynting theorem of fluid dynamics. As shown above the fluid dynamical-electro-
dynamical analogy is not arbitrary. It is a consequence of the fact that both theories describe
the dynamics of conserved currents. We start with the balance of stress-energy flux including
inertial and vortex field contributions

τ τ= − ≡ν
μν

ν
μν μν

νF J . (7)e m; ;

This equation also expresses the balance of stress-energy flux in the fluid. Here the quantity
on the left-hand side describes the stress-energy flux due to inertia τ μν

e . The quantity τ μν
m is the

stress-energy of the fluid vortex field. For completeness, we give the expressions for these

3 Physical quantities (scalars, vectors, or tensors) transform cm-covariantly if they transform according to a
representation of the Lorentz group having a maximum speed parameter cm. Scalars transform cm-invariantly.
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quantities in appendix A, as derived in [2, p 505]. The derivation of the Lorentz force law
states the equivalence of this stress to the stress due to the fluid dynamical vortex field. The
derivation of the form of the stress exerted by the vortex field amounts to proving the identity
τ ≡ −ν

μν μν
νF J( ) .m ; Here the symmetric Maxwell stress-energy tensor, also called the energy-

momentum tensor, tensor τ μν
m of the vortex field, is expressed by4

πη τ¯ = +μν μα
αβ

βν μν
αβ

αβ− g F F g F F4 . (8)m
1 1

4

As a consequence of the isomorphism between the vortex field equations for electrodynamics
and for fluid dynamics, the form of the stress-energy tensor in electrodynamics and fluid
dynamics have the same form as given in equation (8). The evaluation of the stress-energy
tensor in terms of the quantities on the right of equation (8) is most easily effected by
expressing all quantities in terms of their corresponding matrix representations. See also [32,
pp 65, 87] and note if ζ ω=αβF F ( , ), then ζ ω= −αβF F ( , )). We then apply tensor analysis
techniques for evaluating the covariant derivative of τ μν

m to derive the Lorentz force law as
follows. See also [4, section 12.10C]

Theorem 5. Fluid Dynamical Lorentz force law. The force (density) fi acting on the fluid
current due to the fluid vortex field is given by ν= =i( 1, 2, 3, 0, 1, 2, 3)

λζ κ ω λζ= = + × = −ν
ν

ν
ν( )f F J J J F J J( ) , . (9)i i i i i

i0
0

Here ρ=J ui i are the 3-vector components of the fluid current, ζ i and ωi are the vector and
pseudo-vector components of the fluid dynamical vortex field tensor μνF .

Proof. We need to evaluate the covariant derivative τ τ∂ ≡ν
μν

ν
μν( ) .m m; In this evaluation we

use the identity

∂ = ∂ = ∂

= ∂ = ∂

= ∂

μα
ν αβ

βν
ν β

μ βν
ν

μα
αβ

βν

ν
μα

α
ν

ν
μα νβ

αβ

β μα
αβ( )

( ) ( ) ( )
( ) ( )

g F F F F F g F

F F F g F

F F

,

,

. (10)

The fact the covariant derivative of the metric tensor vanishes is used. We also use the
product rule stating the product of an antisymmetric tensor αβF with a symmetric one
vanishes, so

∂ + ∂ =αβ
β μα α μβ( )F F F 0. (11)1

2

There follows the sequence of steps leading to the evaluation of the covariant derivative (We
set η̄ =− 11 on both sides of the equation.)

π τ∂ = ∂ + ∂ν
μν

ν
μα

αβ
βν μν

ν αβ
αβ( ) ( )( ) g F F g F F a4 , (12 )m

1
4

4 See [4, section 12.10B] for a discussion. The right-hand side of equation (8) can also be written as
− +μα μσ

σ
ν μν

αβ
αβg F F g F F1

4
. Sign conventions and metrics are often reversed. In [4] and in [2] and [32] which deal

with the classical theory of electromagnetic and matter fields, the metric is = − − −μνg( ) diag(1, 1, 1, 1) in units
where =c 1m . In [33, section 56] which deals with classical theory of spacetime fields, the opposite signature is used.
Such an overall sign change does not change the field equations, as seen by the fact the (Euler-Lagrange) equations
derived from opposite signatures lead to the same results at an extremum [32, section 33]. One can show in both
cases the energy-momentum tensor is traceless, τ =ν

ν 0.
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= ∂ + ∂ + ∂μα
ν αβ

βν μα
αβ ν

βν μν
αβ ν

αβ( )g F F g F F g F F b, (12 )1
2

π= ∂ − + ∂μα
ν αβ

βν μα
αβ

β μν
αβ ν

αβ( )g F F g F J g F F c4 , (12 )1
2

π= − + ∂ + ∂μα
αβ

β
αβ

μ αβ μα
ν αβ

βν( ) ( )g F J F F g F F d4 , (12 )1
2

π= − − ∂ + ∂ + ∂μα
αβ

β
αβ

β μα α βμ
αβ

β μα( )g F J F F F F F e4 , (12 )1
2

π= − + ∂ + ∂μν
ν αβ

β μα α μβ( )F J F F F f4 , (12 )1
2

π= − μν
νF J g4 , (12 )

τ∂ = −ν
μν μν

ν( ) F J h. (12 )m

Equation (12a) expresses the definition of the covariant derivative of τ μν.m Evaluating the
covariant derivative of the last term of that equation gives equation (12b). Equation (12c)
applies the tensor form of the vortex field equation πη∂ = ¯ν

νβ β−F J4 1 (With η̄ =− 1.1 ) and
corollary 2. The following equation, equation (12d), involves a rearrangement. Equation (12e)
combines the last two terms by applying corollary 2 and the identity, equation (10). To obtain
the next equation, equation (12f), the relation =μα

αβ
β μν

νg F J F J is used. To get equation
(12g) the product rule equation (11), is used. Finally in the last equation, we cancel the factor
of πη̄−4 1. (With η̄ =− 1.1 ) Evaluating the Lorentz force term μν

νF J using equation (1), raising
indices, which changes the sign of the spatial components in the metric chosen, we obtain

λζ λζ λζ
λζ κω κω
λζ κω κω
λζ κω κω

λζ λζ λζ
λζ κω κω
λζ κω κω
λζ κω κω

=

− − −
−

−
−

−
−
−

=

+ +
+ −
− +
+ −

μν
ν

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )F J

J
J
J
J

J J J
J J J
J J J
J J J

0
0

0
0

(13)

1 2 3

1 3 2

2 3 1

3 2 1

0

1

2

3

1 1 2 2 3 3

1 0 3 2 2 3

2 0 3 1 1 3

3 0 2 1 1 2

The theorem statement in equation (9) is obtained from the last three elements of the column
vector defined in this equation and from the first element by using the fact

λζ λζ∑ = −= J Ji i i
i

i1
3 . ■

Examination of the second through fourth elements of the first column of equation (13),
shows the right-hand side contains the familiar form of the Lorentz force in the analogy where
the λζ i are analogous to the components of the electric field Ei and J0 is analogous to the
charge q. The second, third, and fourth lines also involve the components of ω×J . Here, the
κωi are analogous to the components of the magnetic induction field Bi. So these lines account
for the analogy to the u × B of the electromagnetic Lorentz force law. The second relation of
equation (9) is usually omitted in vector analytic derivations. This relation describes effects
analogous to the ‘resistive’ heating caused by the work of the current against the swirl field. It
vanishes for vortex fields transverse to the current flow, i.e., when ζ· =J 0. All of the
Lorentz force components can be computed, given a fluid dynamical current and constitutive
parameters, equations (5).

3.2. Fluid dynamical Poynting theorem

The identity τ = −ν
μν μν

νF J( )m ; , equation (12h), is derived in the proof of the Lorentz force law
above. A detailed expression for τ μν

m is needed to prove the Poynting theorem. This is
provided by evaluating the various tensor quantities in equation (8). The tensor components
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of τ μν( )m can be arranged in the form [4, section 12.10B], [32–34]

τ τ τ τ

τ τ τ τ
τ τ τ τ
τ τ τ τ

η
π

λ ζ κ ω λζ κω

λζ κω
λ ζ ζ κ ω ω

λ ζ κ ω δ

⋮
⋯ ⋮ ⋯ ⋯ ⋯

⋮
⋮
⋮

= ¯

+ ×

×
− +

+ +

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

( )

( )
( )

4

col(

col( )
(14)

m m m m

m m m m

m m m m

m m m m

j

j
j k j k

jk

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

1
2

2 2 2 2

2 2

1
2

2 2 2 2

The lower right-hand block τm
jk describes the spatial components of the Maxwell stress-energy

tensor. The three spatial components of the top row τm
k0 or three spatial elements in the left-

most column τm
k0 describe the momentum components of the vortex field stress-energy tensor.

The upper left-hand corner gives the energy τm
00. A relationship between these quantities is

determined by differentiating the Maxwell stress-energy tensor. This provides proof of the
Poynting theorem that follows.

Theorem 6. (Generalized) Fluid dynamical Poynting theorem. For a simply connected 4D
cm-ST manifold and a homogeneous, isotropic fluid having a linear constitutive relation
between its vortex field ζ ωF ( , ) and its excitations H(ζ ω¯ ¯, ), satisfying GTF vortex field
equations displayed in table 1, the Poynting relations hold

λ ζ λ ζ

η
π

λζ κω λ ζ κ ω

∂
∂

+ · ⃗ = − · = −

=
¯

× = +η
π
¯⎜ ⎟

⎛
⎝

⎞
⎠







( )
t

S c J c J

S
c

,

4
( ) , . (15)

m m
i

i

i m i
8

2 2 2 2

Here  is the fluid vortex field energy, the Si are the components of the fluid dynamical
Poynting vector, ζ and ω are the vector components of the fluid vortex field μνF , and Ji are
the vector components of the fluid current. The parameters κ and λ are constitutive
parameters for a homogeneous isotropic fluid.

Proof. By using equation (14) in equation (12h) and indicating the differentiations, we
obtain

λ ζ κ ω δ
η
π

λζ κω δ

η
π

λζ κω δ

η
π

λ ζ ζ κ ω ω λ ζ κ ω δ δ

λζ

λζ κ ω

∂
∂

+
¯ ×

¯ ×

− ¯ + + +

=
−

− + ×

ν

η
π

ν

ν

ν

η
π

ν

¯

¯⎜

⎛

⎝
⎜⎜⎜ ⎛

⎝

⎞

⎠

⎟⎟⎟⎟
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )
( )

( )

x

J

J J

4
( )

4
( )

4

( )
. (16)

j

j

j k j k jk j

i
i

j j

8
2 2 2 2 0

2 2
8

2 2 2 2

0

Using =x c t,m
0 we then obtain the Poynting theorem of energy density flux from the time-

components:

λ ζ κ ω
ηλζ κω

π
λζ∂

∂
+ +

∂ ¯ ×
∂

= −η
π
¯( )( ) ( )

c t x
J

4
, (17)

m

i

i
i

i8
2 2 2 2

and also a relation for momentum or stress flux (having divided the equation by c )m from the
spatial components:
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λζ κω λ ζ κ ω δ η
π

λ ζ ζ κ ω ω

λζ κ ω

∂
∂

× + + − ¯ +

= − + ×

η
π
¯( )( ) ( )

( )
x

J J

(2 )
4

( ) . (18)

k
k jk j k j k

j j

8
2 2 2 2 2 2

0

This equation provides a generalization of the standard Poynting theorem which is usually
limited to equation (17). On comparing equations (15) and (17), the Poynting theorem,
equation (15), follows.

Examining the structure and physical units used in equations (15) through (18) shows the
vortex field modes transport energy and momentum or equivalently stress-energy. More
specifically, since ω = −T[ ] ,1 ζ = −LT[ ] ,2 λ = −TL[ ] ,1 κ =[ ] 1, η̄ = M L[ ] [ ], η = M LT[ ] [ ],
and = − −J ET L L[ ] ,2 2 3 the terms in Poynting theorem, equation (17), are dimensionally
homogeneous with dimension × ;E

L T

1
3

energy dissipation rate/unit volume. The dissipation
due to λ ζ− ·c Jm is seen to represent an energy-dissipation rate/unit volume caused by
currents working against the swirl field. The term λ ζ− ·c Jm gives a velocity dependent
contribution to the energy-momentum dissipation, thereby lending stability to the flow
equations in the otherwise unstable high Re limit [35], [36]. This energy-dissipation is
analogous to a ·V I resistive or an I R2 loss in electrodynamics leading to Joule heating. The
vector ⃗=S λζ κω×η

π
¯

( )
c

4
m is the analog of the Poynting vector in electromagnetic theory, so

this term describes the net momentum flux · ⃗ S cm of the mode system. Let us define an
energy-momentum density 4-vector = S S c S c S c( , , ).x

m
y

m
z

m Here we include cm in the
metric. Therefore, the fluid dynamical Poynting theorem given in equation (17) can be
interpreted physically as stating the sum of the rate of change of the energy-momentum
density ∂μ

μS of the transverse mode excitations is limited to the rate λζ Ji i at which the flow
can generate heat, λζ∂ = −μ

μS Ji i. The transport of stress-energy stated in the Poynting the-
orem, equation (17), describes new, propagating, channels of energy transport absent in
the NST.

4. Implications of the Lorentz force law and Poynting theorem

4.1. Field equations reflecting new channels of stress-energy transport

The Lorentz force law and Poynting theorem describe the physical effects incorporated into
the GTF, a cm-Lorentz covariant theory of fluid flow. This theory comprises the the equations
expressing the conservation of the sum of the stress-energy of the inertia τ μν

e of the fluid plus
the stress-energy of the vortex field τ μν

m , the equations of the fluid vortex field, and the
definitions of the current μJ and vector potential μA :

τ τ

τ τ

π η π
η

+ =

= − ≡

≡ ¯ □ =
¯

= ∂ − ∂

μν μν
ν

μν
ν ν

μν μν
ν

μ μν
ν

μ μ

μν μ ν ν μ

−

( )

( )
( ) F J

J F A J

F A A

0.

,

(4 ) ; ,
4

,

. (19)

e m

e m

;

; ;

1

The first equation can also be interpreted as stating the balance of inertial stress-energy flux
and fluid vortex field flux. In the second equation, the right-hand side is evaluated by using
theorem 5 showing the fluid is driven by the Lorentz force. This balances with the inertia of
the fluid on the left-hand side. Included in the latter is the pressure of the fluid. On the left-
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hand side of the second equation, the convective behavior of the motion of matter is
expressed. On the right-hand side, the propagation of the vortex field working against the
current is expressed. The Poynting theorem theorem 6 gives the details, showing the fact the
flow can be dissipative λ ζ− ≠c J 0m

i
i . The third equation gives a covariant definition of the

current 4-vector μJ , in contradistinction to the components of the second order stress-energy
tensor described in [2] as explained in appendix A. In appendix B we show η λ¯ = ¯c .m The
wave equations determining the vortex field are hyperbolic and causal. The first equation is a
constraint that energy-momentum be conserved. The other equations are definitions
facilitating the computation of the current and the vortex field. The equations are not
restricted to incompressible fluids. The introduction of the 4-vector potential μA introduces a
scalar potential Φ, Φ=μ( )A A A A( , , , ).1 2 3 This potential is in a sense a velocity potential: its
gradient gives a force acting on unit density elements of the fluid. The current

π η≡ ¯μ μν
ν

−J F(4 ) ;1 is a cm-Lorentz covariant 4-vector defined by the fluid vortex field.

4.2. Balance of stress-energy in high speed limits

In this section we examine the conundrum of the disappearance of viscous stress effects at
high Reynolds numbers. In our analysis we first combine the newtonian viscous stresses in
the stress-energy flux balance equations togetherr with the stress-energy of the vortex field.
(An analysis of the validity of this combination is provided in the next section.) In this manner
we can examine the relative scale of terms for time-dependent flow as the Reynolds number

η ρ ν= ≡u L U LRe ( )0 0 0 increases. The combination gives the following stress-
energy flux balance equation [3] μ ν =( , 0, 1, 2, 3)

τ τ τ+ = − ≡μν μν
ν ν

μν μν
ν( ) F J . (20)e n m; ;

Here τ μν
e is the stress-energy tensor of inertia, τ μν

n is the stress-energy tensor due to the
newtonian viscous stresses and τ μν

m is the (Maxwell) stress-energy tensor of the fluid vortex
field [3]. The detailed expressions for these tensors is given in appendix A and a
dimensionally analyzed version of the equation is given below as equation (22). For the
moment we focus on the structure of the equations. The energy and momentum (equivalently
stress-energy) are coupled in equation (20), reflecting the coupling of space and time into one
geometric structure. The last equality in equation (20) is a mathematical identity obtained by
evaluating the covariant derivative of τ μν

m as described below. The identity in the last part of
equation (20) provides the basis for the derivation of the fluid dynamical Poynting theorem. In
fact, the last term contains the Lorentz force which is seen to be in balance with the inertial
and viscous force flux.

We next analyze the structure of equation (20) by expressing it in dimensionless form.
The density ρ of the fluid is assumed constant for simplicity. We proceed to use the defi-
nitions given in appendix A to evaluate the left-hand side of equation (20) for a cartesian
coordinate system giving:

τ τ ρ η

ρ δ η

ρ δ η σ

+ = ∂
∂

+ ∂
∂

+ ∂
∂

− ∂
∂ ∂

= ∂
∂

+ ∂
∂

+ ∂
∂

− ∂
∂ ∂

+ ∂
∂ ∂

= ∂
∂

+ ∂
∂

− ∂ ˜
∂

ν
μν ν

μ

ν
μ

ν

ν ν
μν

μ

ν ε
εν

ν
μ

ν
μ

ν

ν ν
μν

μ

ν ε
εν

μ

ε ν
νε

ν
μ

ν ν
μν

μν

ν

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 

 

u
u

x
u

u

x

p

x

u

x x

u
u

x
u

u

x

p

x

u

x x

u

x x

u
u

x

p

x x

( ) ,

2

. (21)

e n ,

2

2 2
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These equations are limited to the case ≪u cm. Here the spatial projection operators μν
are defined in appendix A. This result can be non-dimensionalized (as indicated by the
⋆-subscripts and the scale factors U L P, , ,0 0 0 and T0), simplified by dropping quadratic terms
in μu such as − ∂ ∂μ ν ν

⋆ ⋆ ⋆ ⋆( ) ( )U c u u p x ,m0
2 2 as they would be small when

= ≪u c U c 1m m0 , then combining terms with the right-hand side of equation (20)
giving

ρ
δ η

ρ
σ

σ

∂
∂

+
∂
∂

=
∂ ˜
∂

+

=
∂ ˜
∂

+

ν
μ

ν ν
μν

μν

ν
μν

ν

μν

ν
μν

ν

⋆
⋆

⋆

⋆

⋆

⋆

⋆
⋆ ⋆

− ⋆

⋆
⋆ ⋆

⎛
⎝⎜

⎞
⎠⎟

( )

u
u

x U P

p

x U L x

L

T U
F J

x U L T
F J

1 1
,

Re
1

. (22)

0
2

0 0 0

0

0 0

1

0 0 0

The fluid pressure is given by p and the Cauchy stress tensor, generalized for a 4D cm-
spacetime is denoted by σ̃ μν. (See appendix A.) Because of the inclusion of the newtonian
viscous stress these equations are acausal: we notice some immediate parallels to the non-
dimensionalized NSEs. The first term on the left contains the spatial and temporal gradients
comprising the total derivative Du Dti of the NSEs. The pressure gradient is also present on
the left-hand side. Since we have included a newtonian viscosity, the spatial derivatives of the
Cauchy strain rate tensor σ̃ μν

⋆ also appears, on the right-hand side. These terms, however, are
augmented by temporal derivatives. The new term on the far right contains the effects due to
the fluid vortex field. Equation (22) contains the Navier-Stokes equations with a Reynolds
number dependence ( η ρ=− [ ]U LRe [ ] )1

0 0 as well as a new forcing term having a new
dimensionless group which is of the form of the ratio of two characteristic velocities

−( )L T U0 0 0
1. The T0 comes from the vortex field and L0 from the geometric scale of the flow

tube. The ratio is therefore a vortex field speed to the fluid speed. From equation (22) it is
clear that the dimensionless group −( )L T U0 0 0

1 multiplying the non-dimensionalized vortex
field effects μν

ν⋆ ⋆F J is independent of the Reynolds number.
We can examine the implications of the new dimensionless grouping in equation (22) as

follows. Consider a fixed characteristic value of the ratio of the dimensionless group of
velocities −( )L T U0 0 0

1. The limit of negligible viscous stresses is then found by allowing the
Reynolds number Re to approach infinity (e.g., ν η ρ= → 0) in a way that leaves the last
term in equation (22) non-vanishing but scaled by the fixed ratio of velocities −( )L T U .0 0 0

1

This yields a high Re limit where inertial and vortex field stresses dominate with the viscous
stresses contributing little. Recall at high Re the NSEs describe just the inertial forces as if the
fluid were a perfect fluid. The new term, the Lorentz force term μν

ν⋆ *F J , does not depend
directly on the Reynolds number (newtonian viscosity) and remains even as → ∞Re .
Equation (22) shows viscous stresses are decoupled from the vortex field dynamical effects
(proportional to μν

ν⋆ *F J ). The remaining part of the equations describe the causal balance of
inertial and vortex field stress-energies. Therefore using the GTF, it is possible to formulate a
causal theory of time-dependent flow as → ∞Re , i.e., in the limit of vanishing newtonian
viscous stresses. That is, as the newtonian viscous stress contribution to the stress-energy flux
balance vanishes, the acausality due to newtonian viscosity is removed. In the → ∞Re limit,
the forces determining the current remain in balance: that balance being struck by the inertial
and the vortex field stress-energies. In such a theory, new channels of energy dissipation and
transport due to the vortex field modes are active.
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4.3. Characterization of time-independent and time-dependent flows

An analysis of how to include the vortex field and newtonian viscous stresses into the stress-
energy flux balance equations is presented in this section. For simplicity, we consider the
constant density, small flow speed limit (relative to the maximum transverse mode speed c ,m

i.e., ≪u c 1m ) of the stress–energy flux balance. This limit yields the following set of
equations [2, 37]

ρ
ν· + =  u u p u a

1
(23 )i i i2

ρ
λζ κ ω∂

∂
+ · + = + × 

u

t
u u p

c
u b

1
( ) , (23 )

i
i i i

m

i

ω ζ ω

ζ πρ ζ ϖ π

· = × + ∂
∂

=

· ¯ = − ∂ ¯
∂

+ × =

 

 

t

c t c
J c

0 0

4
1 4

(23 )
m m

As displayed, equation (23a) contains the Navier-Stokes term η ρ ν≡ u u( ) i i2 2 due to
newtonian viscosity for time-independent flow. This term provides the balance to the inertial
stresses when there is no concern about acausal action-at-a-distance (newtonian physics). The
equation is mathematically classified as an elliptic boundary-value problem. One can use
equation (23a) to compute the steady, laminar flow. This laminar time-independent flow
equation can be considered to provide a ‘vacuum’ or reference state from which time-
dependent flow emerges as, say, pressure drop is increased. In short, equation (23a) is is
formulated in a context where causality does not enter—because no time-dependence is
involved in its formulation. The results of equation (23a) can be obtained, by solving for the
time-independent limit of equations (23b-23c), i.e., for stationary fields. In this case the
energy-dissipation is still given by the Poynting theorem as λ ζ·J . Equation (23b) for time-

dependent flows contains the effects of the Lorentz force ρ=f i λζ κ ω= + ×ν
νF J c u/ ( )i i

m
i

exciting the fluid and replacing the newtonian viscous stress term. Although equation (23b) is
mathematically the large Reynolds number limit of equation (22) above, equation (23b)
should not to be considered as a high Re limit of a time-dependent NST; the equation stands
on its own as describing a time-dependent dissipative fluid flow. For a given geometry, the
pressure or flow rate, at which the transition to time-dependent flow occurs, i.e., where the
solutions to equation (23a) transfer to those of equation (23b), can be determined by
simultaneously solving equations (23b-23c). When the time-dependent vortex modes are
excited, a substantial increase in energy dissipation occurs and can be measured [39].
Equations (23a-23c) are thus hybrid equations for laminar and time-dependent flows. These
equations include as a stationary case a formulation in terms of the effects of newtonian
viscous stresses. For the dynamical case and its stationary limit, the equations containss the
effects of the vortex field.

The physical picture is that the vortex field modes are added (subtracted) to (from) the
vacuum state as higher levels of excitation occur. The vortex field modes or elementary
excitations are solutions to the vortex field equations (equation (23c)). These can be used as a
basis set to define the elementary excitations. The vortex field modes can be obtained using
the wave equation for the vector potential—See corollary 4. The wave operator is essentially
self-adjoint, generating a complete set of basis functions. The propagation of stress-energy by
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such modes can impact the linear stability and stress-energy transport (convective and pro-
pagational) analysis.

5. Summary and conclusions

This paper provides an elaboration of our theoretical description of fluid flow called the
geometrodynamical theory of fluids (GTF). The paper is focused on two key ingredients of
that theory: the Lorentz force Law and the Poynting theorem. The GTF, itself, is based on the
mathematical theory of conserved currents as reflected in the vortex field lemma. Exploiting
the lemma allows introducing a 4-vector current definition, a tensor formulation, and the
introduction of causal equations to describe fluid dynamics. The result is a causal, covariant
field theory of fluid flow. A remarkable aspect of the GTF is it contains a subset of equations,
for what we call the fluid vortex field, that are mathematically isomorphic to the Maxwellʼs
equations of electrodynamics. Consequently, we are able to derive a fluid dynamical Lorentz
force law and fluid dynamical Poynting theorem following approaches established in the
theory of electrodynamics. This provides a basis for a fluid dynamical-electrodynamical
analogy—the theory shows the GTF equations and those of electrodynamics (EMT) are
isomorphic. We show the fluid dynamical Lorentz force is produced by the fluid vortex field
generated by the conserved fluid current. The fluid vortex field, in turn, modifies the stress-
energy flux balance of the fluid. This leads to new causal channels of stress-energy transport
and dissipation which are described by the fluid Poynting theorem. These channels persist in
the high Reynolds number limit → ∞(Re ) providing a balancing stress to the inertial stresses
in the fluid and also providing stress-energy dissipation. These effects are absent from the
NST. Because the GTF is causal and covariant—a modern field theory—it is likely that it can
form part of a successful theory of turbulence.
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Appendix A. Covariant current, Maxwell, Euler, and Navier-Stokes stress-
energy tensors

The definitions of the covariant 4-current, Maxwell, Euler, and Navier-Stokes stress-energy
tensors are given in a cm-Lorentz covariant form compatible with the VFEs. The maximum
speed of transverse waves is cm, which we set to unity except for emphasis.

For the following discussion of the 4-vector nature of the current J, we need the vortex
field lemma (VFL) giving the field equations relating the current density ⋆J to the fluid
excitations H. The VFL is a fundamental consequence of the constraint of fluid conservation
that is obeyed for all classical theories of continua [3]. The lemma follows on using the
principle of current density conservation [3] and the converse of the Poincaré lemma stating
an closed differential form F, i.e., one for which =dF 0, locally has a potential α=f d [38,
p 27].
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Lemma 7. Vortex Field Lemma (VFL, Scofield and Huq, [3]). For a contractible
4D spacetime manifold with conserved currents, ⋆J -conservation (equivalently, the continuity
equation) implies the vortex field equations

π= ⋆dH J4 , (A.1)

=dF 0. (A.2)

Here H is the vortex field excitation 2-form, ⋆J is the current density 3-form, F = dA is the
gauge degree of freedom of H (i.e., = +dH d H F( ) ), called the vortex field strength 2-form,
and A is its gauge potential, a 1-form.

Theorem 8. Conserved 4-Vector Current. Given the constitutive relations =⋆H F, a
Lorentz covariant current is derived from the vortex field by π η≡ ¯μ μν

ν
−J F(4 ) ;1 . This current

is necessarily conserved.

proof. By the vortex field lemma π=⋆ ⋆d H J4 implies =⋆d J 0 and consequently the
continuity equation, ∂ =μ

μJ 0, and conversely [3]. From equation A.1), we have
π=⋆ −J dH(4 ) .1 Substituting from the constitutive relations into this equation, we have
π=⋆ − ⋆J d F(4 ) .1 Taking the Hodge-⋆ of this equation for 4D spacetimes with signature 2

gives the definition of the current 1-form:
π π π δ= = =− ⋆ ⋆ − ⋆ ⋆ −J d F d F F(4 ) (4 ) (4 )1 1 1 , where we have introduced the codifferential

δ = ⋆ ⋆d . This result is equivalent to the tensor definition π η≡ ¯μ μν
ν

−J F(4 ) ;1 , where the factor
of η̄ has been reintroduced to make the tensor relation consistent with the units chosen. Using
the constitutive relations = ⋆H F , we can take the covariant definition of current to be

π η≡ ¯μ μν
ν

−J F(4 ) ; . (A.3)1

Since μνF is covariant (in fact Lorentz covariant, based on the isomorphism of Maxwellʼs
equations and the VFEs; Maxwellʼs equations are c -Lorentz covariant) and covariant
derivatives are also covariant. Since π=⋆ − ⋆J d F(4 ) ,1 π= =⋆ − ⋆d J d F(4 ) 0,1 2 the current

μJ defined this way is a necessarily a conserved 4-vector.

The current must be self-consistently computed from the vortex field equations. The
solutions to the vortex field equations can be constrained, for instance, by requiring them to
satisfy a stress-energy flux balance as described in the main body of the paper.

This definition and the developments in the main body emphasize the fact the current J is
the physical quantity. Only when the density is a constant can we write

ρ ρ ρ ρ=μ ( )( )J c u u u, ,m0 0
1

0
2

0
3 . In this case ρ0 is assumed to be a Lorentz scalar. Since the

velocity is Lorentz covariant, this expression for the current is Lorentz covariant. If ρ is not a
constant, since cm is a constant then we can define ρ ρ ρ ρ≡μ ( )( )J c u u u, ,m

1 2 3 by setting
=μ μu J c .m The Lorentz force 1-form can be constructed as an interior product (or con-

traction):

∧ =μν
μ ν

μν
ν μ( )i F dx dx F J dx . (A.4)J

Definition 9. Maxwell stress tensor τ μν( )m . See equation (14). Our convention for units
implies κ is unitless.
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Definition 10. Euler inertial stress-energy tensor. The fluid inertia stress-energy (density)
tensor τe is given by [2, Ch XV], [10]

τ ρ= + + = +μν μ ν μν μ ν μ ν μν−( )u u p g c u u hu u pg . (A.5)e m
2

Here μu is the 4-velocity a first order tensor. The quantity ε= + −h pcm
2 is the heat function

per unit volume (enthalpy) of the fluid; ε is the internal energy per unit volume (including rest
mass-energy ρc2), and p is the pressure referred to proper (cm-Lorentz covariant) volumes in
energy units. The enthalpy for low speed ≪u c 1,m incompressible flows is essentially
the constant mass-density. The stress-energy density tensor in D4 cm-spacetime (cm-ST) on
inserting physical components of velocity, u, is

τ
β

ε β
β

τ
β

τ
β

δ β

=
−

− = +
−

= −
−

=
−

+ =

α
α

αγ
α γ

αγ

( )

( )

h
p

p hv

c

hv v

c
p v c

1 1
,

1
,

1
, . (A.6)

e e
m

e
m

m

00
2

2

2
0

2

2 2

The metric of the cm-ST is = − − −μν( )g diag(1, 1, 1, 1), =c 1m and the normalized
velocity vector components ˆμu . The spatial current components in the limit ≪u cm are
approximately equal to ρu + u c( )m

2 , thus limit to ρu. The temporal part of the energy-
momentum tensor τe

00 limits to ρ ρε ρ+ +c u(1 2) ,m
2 2 so the momentum τ ce m

00 limits to ρcm

[32, p 506]. Thus, the limits of the temporal components of the energy-momentum second
order tensor τ α ce m

0 also give a current. The quantity τ μν
e is covariant in the sense it is a tensor,

unchanged in form under differential coordinate transformations, specifically, the equations of
motion are cm-Lorentz covariant. For larger velocities compared to cm the full apparatus of
tensor analysis must be used.

This current is formed from elements that are the time components τ τ τ τ( ), , ,e e e e
00 10 20 30 of

the second-order energy-momentum tensor τ μν
e . In the most general case these quantities do

not form components of a 4-vector. Thus, the covariant 4-vector definition of the necessarily
conserved current vector of theorem 8 is required. In the case of constant density ρ0, the fluid
analog current vector is invariant with respect to spacetime (Lorentz) transformations because
the velocity 4-vector is Lorentz transformation invariant in the same way as in electro-
dynamics. At small enough flow speeds ≪u cm these considerations are of small prac-
tical importance for either electrodynamics or fluid dynamics.

Definition 11. Navier-Stokes viscous stress-energy tensor. The Navier-Stokes stress-energy
(density) tensor is given by [2, Ch. XV], [33, section 22.3]

τ η σ δθ= − ˜ +μν μν μν( )2 . (A.7)n

The signature convention is such that stress-energies at a point appear with plus signs when
summed at a point. Here σ θ˜ = + −μν ν

ϵ
μ ϵ μ

ϵ
ν ϵ μν  ( )u u1

2 ; ;
1

3
, where the projection operator

μν to a spatial 3-volume perpendicular to the spacetime 4-vector û ( ˆ · ˆ =u u 1) is
δ= − ˆ ˆμν μν μ ν u u . The operators δ= −μν μν μνQ project vector components onto the fluid

pathlines (world lines in the spacetime). The quantity θ = μ
μu; , η is the absolute viscosity, and

δ is a dilatation viscosity effect coefficient arising from dissipation due to compression/
expansion of the fluid. The conditions
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τ τ= =μ
μν

ν
νu 0, 0, (A.8)u n

serve to restrict the structure of the relativistic extension of the stress tensor.

Choosing the galilean time axis to be aligned with the proper time axis at a point and
using a cartesian coordinate system gives =νu( ) (1, 0, 0, 0) and =νu( ) (1, 0, 0, 0) in the
moving frame of the fluid so = =μν

μν ( ) ( ) diag(0, 1, 1, 1). So, the 4-velocities μu have
the normalization = =μ

μu u c1, 1.m In this frame τ τ τ= = =ν μ 0n n n
00 0 0 and for an incom-

pressible fluid

τ η→ ∂
∂

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

u

x

u

x
, (A.9)ij

i

i

i

i

as required. We also have

τ
η η η

∂
∂

= ∂
∂ ∂

+ ∂
∂ ∂

→ ∂
∂ ∂

=
μν

ν

μ

ν ε
εν

ν

ν ε
εμ

μ

ν ε
εν μ

⎛
⎝⎜

⎞
⎠⎟   

x

u

x x

u

x x

u

x x
u . (A.10)n

2 2 2
2

The last equation holds for an incompressible fluid and a cartesian coordinate system. Terms
involving μ νu u cm

2 in the projectors εν to the 3D spatial manifold can be neglected under the
assumption ≪μ νu u c 1.m

2

Appendix B. Constitutive parameter set reduction

The stress-energy flux equations of [2] based on the inertial and viscous stresses omit the full
consequences of the conservation of current embodied by the vortex field equations. The
viscous stress terms are Lorentz covariant but lead to the problem of acausality as discussed in
the main text. The acausality problem is removed when the GTF vortex field is included.

It is well known that the number of (linear response) independent constitutive coefficients

κλ
μνC for homogeneous, isotropic fluids is only two. This implies from the quantities

λ κ λ κ¯ ¯{ }, , , appearing in table 1 that only two, the ratios of these quantities, namely
λ λ κ κ¯ ¯{ }, , are independent. In the main text, we also note the total number of constitutive

parameters in the set μ κ μ κ η¯ ¯ ¯ c{ , , , , , }m can be reduced to three. This is a convenience, and
has some merit of economy from both a theoretical and an experimental standpoint. From the
experimental standpoint, there are fewer parameters to measure. From the theoretical stand-
point there are fewer parameters to compute. The problem in the present case is to make the
best choice of parameters. In electrodynamics, the arrangement is not entirely satisfactory as
the fields and excitations are related by ( ε μ= −D H E B, ) ( , )1 involving an inverse. Thus, in
this instance, electrodynamics is not the best guide. Instead, here we minimize the number of
constitutive parameters in a way that the units of ω and ζ are those of the corresponding NST
quantities Ω = × u and Λ Ω= × u, namely, ω = −T[ ] ,1 ζ = −LT[ ] 2 for incompressible
fluids. We show the parameter η̄ can be removed as in electrodynamics. As we have seen in
the main text, choosing the units of ω and ζ to have the same units as the NST quantities Ω
and Λ, simplifies the interpretation of the theory. On the other hand from a theoretical
standpoint, the full set of parameters reveals symmetries and derivation pathways in the
theory that a rigid parametrization does not. We have used this approach in analyzing clas-
sical field theories [3].

We first derive the VFEs appearing in lemma 7 then apply dimensional analysis
yielding an exact formal map of the fluid to the electrodynamic VFEs in the form of Max-
wellʼs equations. This permits us to show how the assumption of homogeneity and isotropy

Fluid Dyn. Res. 46 (2014) 055514 D F Scofield and P Huq

18



enter the theory. The vortex field lemma (VFL, Lemma 7) shows the continuity equation,
∂ =μ

μJ 0, is equivalent to the differential geometric relations π η= * ¯dH J4 and dF = 0. There
exists a 1-form A such that F = dA because of the Poincaré lemma. In the language of the
exterior calculus, the constitutive relations are given by -* =H F. Using these results we can
derive the simplified VFEs corresponding to lemma 7 as follows.

It is first recalled, in the exterior calculus, the ‘wedge’ product is defined as
α β β α∧ = − ∧ . The exterior derivative d of a wedge product of q and p- forms is given by
the relation α α α α α α∧ = ∧ + − ∧( )d d d( 1)

q p q p q q p
[38, p. 20]. The exterior derivative of the

p-form ω
p
satisfies Poincaréʼs lemma ω =d 0.

p2 In terms of this calculus, the fluid excitation 2-
form H and the vortex field 2-form F can be written as

λ ζ ζ ζ

κ ω ω ω

λ ζ ζ ζ

κ ω ω ω

−* = ¯ ¯ + ¯ + ¯ ∧

+ ¯ ¯ ∧ + ¯ ∧ + ¯ ∧

= + + ∧

+ ∧ + ∧ + ∧

( )
( )

( )
( )

H dx dx dx c dx

dx dx dx dx dx dx

F dx dx dx c dx

dx dx dx dx dx dx

,

. (B.1)

m

m

1
1

2
2

3
3 0

1
2 3

2
3 1

3
1 2

1
1

2
2

3
3 0

1
2 3

2
3 1

3
1 2

The constitutive relation −* =H F , by equating like-differential forms, shows only λ λ¯ and
κ κ¯ are linearly independent. The equations are for isotropic media as the same coefficients
are used in each differential coordinate direction. The parameters are assumed constant,
therefore the medium is homogeneous. Evaluating dF gives

λ
ζ ζ

λ
ζ ζ

λ
ζ ζ

ω ω

ω ω

ω ω

=
∂
∂

∧ +
∂
∂

∧ ∧

+
∂
∂

∧ +
∂
∂

∧ ∧

+
∂
∂

∧ +
∂
∂

∧ ∧

+
∂
∂

∧ ∧ +
∂
∂

∧ ∧

+
∂
∂

∧ ∧ +
∂
∂

∧ ∧

+
∂
∂

∧ ∧ +
∂
∂

∧ ∧

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

dF c
x

dx dx
x

dx dx dx

c
x

dx dx
x

dx dx dx

c
x

dx dx
x

dx dx dx

x
dx dx dx

x
dx dx dx

x
dx dx dx

x
dx dx dx

x
dx dx dx

x
dx dx dx (B.2)

m

m

m

1

2
2 1 1

3
3 1 0

2

3
3 2 2

1
1 2 0

3

1
1 3 3

2
2 3 0

1

0
0 2 3 1

1
1 2 3

2

0
0 3 1 2

2
2 3 1

3

0
0 1 2 3

3
3 1 2
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Collecting like terms, we obtain

λ
ζ ζ

λ
ζ ζ

λ
ζ ζ

ω ω

ω

ω ω ω

=
∂
∂

−
∂
∂

∧ ∧

+
∂
∂

−
∂
∂

∧ ∧

+
∂
∂

−
∂
∂

∧ ∧

+
∂
∂

∧ ∧ +
∂
∂

∧ ∧

+
∂
∂

∧ ∧

+
∂
∂

+
∂
∂

+
∂
∂

∧ ∧

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

dF c
x x

dx dx dx

c
x x

dx dx dx

c
x x

dx dx dx

x
dx dx dx

x
dx dx dx

x
dx dx dx

x x x
dx dx dx . (B.3)

m

m

m

3

2

2

3
1 2 0

1

3

3

1
3 1 0

2

1

1

2
1 2 0

1

0
2 3 0 2

0
3 1 0

3

0
1 2 0

1

1

2

2

3

3
1 2 3

By using the Hodge-⋆ to obtain a 4-vector representation of these equations, one obtains from
=dF 0:

ω ζ ω
λ

· = × + ∂
∂

= 
c t

0, 0. (B.4)
m

We notice λ =[ ]c 1.m Similarly, by taking the Hodge-⋆ of the first of equation B.1), using the
facts = −⋆⋆H H and =⋆⋆J J, then proceeding to evaluate π=dH J4 , one obtains

ζ π
λη

ρ ζ κ
λ

ω π
λη

· ¯ = ¯ ¯
− ∂ ¯

∂
+ × ¯

¯ ¯ = ¯ ¯
 c

c t
J

4
,

1 4
. (B.5)m

m

We use dimensional analysis to verify a consistent system of units can be obtained in
which η̄ can be eliminated. With the basic units of mass (M), length (L) and time T( ) we
expect to find at most three independent parameters. In the main part, the units are chosen so
that ω and ζ have the same units as the NST quantities Ω and Λ: ω = −T[ ] 1, ζ = −LT[ ] .2

Furthermore, =J M L T[ ] ,2 and λ κ= =−TL[ ] , [ ] 1.1 We also have η = =M LT ET L[ ] [ ] 3

and η η¯ = =M L T[ ] [ ] [ ] , and = =A L T u[ ] [ ]. Thus λ =[ ]c 1.m Equation (B.4) is thus
dimensionally consistent. The fluid dynamical Lorentz force (density) law is then found:

λ ζ κ ω λζ κ ω= + × = + ×
⎛
⎝⎜

⎞
⎠⎟f J J J

c
u( ) ( ) . (B.6)i i i i

m

i
0 0

Where ρ=J cm0 and in the second equation we use ρ=J u ,i i a relation valid for ≪u cm,
requires the sum term be dimensionally homogeneous, so as a check we have

λζ κ ω⊕ × ⇒ ⊕ =
⎡
⎣⎢

⎤
⎦⎥c

u
T

L

L

T

T

L

L

T T T
[ ]

1 1
. (B.7)

m
2

To maintain this relationship, we cannot set λ =[ ] 1. From the first of equation B.5), we see a
simplification λη¯ ¯ = cm is possible. So λ̄ = − −⎡⎣ ⎤⎦ L M T .2 1 1 This requires ζ̄ =− −⎡⎣ ⎤⎦L ML ,1 3 so

ζ̄ = −⎡⎣ ⎤⎦ ML .2 Using λη¯ ¯ = c ,m in the second of equation (B.5) we find

κ
λ

ω· · ⊕ × ¯
¯ ¯ =

⎡
⎣⎢

⎤
⎦⎥

T

L

M

L T

M

L

1
. (B.8)

2 3

This relation is consistent as long as ω× ¯ =κ
λ
¯
¯

−⎡⎣ ⎤⎦ ML 3. So that defining
ϖ κ λ ω≡ ¯ ¯ ¯ = −⎡⎣ ⎤⎦ ML 2 and using κλ κλ= ¯ ¯cm

2 from corollary 3 and κ = 1, as well as
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λ = −TL[ ] 1, we see κ λ¯ ¯ = −⎡⎣ ⎤⎦ TL 1 and κ̄ = −LM .1 Summarizing:

ϖ ζ=
¯

=
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥L

M

L L

M

L
, . (B.9)

3 3

These results suggest the vortex field excitations are ones of mass density. The fields
themselves are mass fluxes defined as mass through an area. Since ϖ× and ζ× ¯ have
these units, it may well be that these curl variables are more closely related to physically
measurable variables. One can verify λζ λζ= ¯ ¯ = −⎡⎣ ⎤⎦ T[ ] 1 and κω κω= ¯ ¯ = −[ ] T[ ] ,1 so the
constitutive relations are consistent with the present reduction. The field equations can then be
written in the Maxwell equation form by using the new variable ϖ λ ω= ¯−1 introduced above:

ðB:10Þ

Thus, by choosing the scales of the fields, the fluid VFEs map to the form of the
electromagnetic VFEs. The three parameters λλ̄− ,1 λ̄− ,1 and κ̄ allow cm to be computed and
enter the theory as follows:

ζ λλ ζ ϖ κ λ ω λ ω κλ κλ κλλ¯ = ¯ = ¯ ¯ ¯ = ¯ = ¯ ¯ = ¯ ¯− − −( ) ( )( ) c, , 1 . (B.11)m
1 1 2 1

With our restriction of the units for the vortex field to match the NST variables, the units of
the excitations are thereby determined by the dynamical equations. The choice of metric

= − − −μνg( ) (1, 1, 1, 1) used here is reflected in the signs of the density ρ (+) and current J
(+). For time-dependent flows with many spatial scales, it is likely that the constitutive
parameters κ λ λ¯ ¯{ }, and κλ κλ= ¯ ¯cm

2 are frequency and wave vector dependent as are the
analogous parameters in electrodynamics.

References

[1] Scofield D F and Huq P 2014 Fluid dynamical Lorentz force law and Poynting theorem—

introduction Fluid Dyn. Res. 47 055513
[2] Landau L D and Lifshitz E M 1989 Fluid Mechanics 2nd ed (with corrections) (Oxford:

Butterworth-Heineman)
[3] Scofield D F and Huq P 2010 Concordance among electromagnetic, fluid dynamical, and

gravitational theories Phys. Lett. A 374 3476–82
[4] Jackson J D 1998 Classical Electrodynamics 3rd ed (New York: Wiley)
[5] Marmanis H 1998 Analogy between the Navier–Stokes equations and Maxwellʼs equations:

application to turbulence Phys. of Fluids 10 1428–37
Errata 1998 Phys. of Fluids 10 3031

[6] Belevich M 2008 Non-relativistic abstract continuum mechanics and its possible physical
interpretations J. Phys. A: Math. Theor. 41 045401

[7] Martins A A and Pinheiro M J 2009 Fluidic electrodynamics: an approach to electromagnetic
propulsion Phys. of Fluids 21 097103

[8] Kambe T 2010 A new formulation of equations of compressible fluids by analogy with Maxwellʼs
equations Fluid Dyn. Res. 42 055502

[9] Kambe T 2010 Geometrical Theory of Dynamical Systems and Fluid Flows (Singapore: World
Scientific)

[10] Eckart C 1940 The thermodynamics of irreversible processes. Part III. Relativistic theory of simple
fluids Phys. Rev. 58 919–24

Fluid Dyn. Res. 46 (2014) 055514 D F Scofield and P Huq

21

http://dx.doi.org/10.1016/j.physleta.2010.06.037
http://dx.doi.org/10.1063/1.869762
http://dx.doi.org/10.1063/1.869825
http://dx.doi.org/10.1088/1751-8113/41/4/045401
http://dx.doi.org/10.1063/1.3236802
http://dx.doi.org/10.1088/0169-5983/42/5/055502
http://dx.doi.org/10.1103/PhysRev.58.919


[11] Carter B 1973 Elastic perturbation theory in general relativity and a variational principle for a
rotating solid star Commun. Math. Phys. 30 261–86

[12] Stewart J M 1977 On transient relativistic thermodynamics and kinetic theory Proc. Roy. Soc.
(London) A 347 59–75

[13] Israel W and Stewart J M 1977 On transient relativistic thermodynamics and kinetic theory II
Proc. Roy. Soc (London) A 365 43–52

[14] Hiscock W A and Lindblom L 1985 Generic instabilities in first-order dissipative relativistic fluid
theories Phys Rev. D 31 725–33

[15] Liu I-S, Muller I and Ruggeri T 1986 Relativistic thermodynamics of gases Ann. Phys. 169
191–219

[16] Carter B 1989 Relativistic Fluid Dynamics ed A Anile and Y Choquet-Bruhat (Berlin: Springer)
[17] Geroch R and Lindblom L 1990 Dissipative relativistic fluid theories of divergence type Phys. Rev.

D 41 1855–61
[18] Lindblom L 1996 The relaxation effect in dissipative relativistic fluid theories Ann. Phys. 247 1–18
[19] Lindsey J E, Wands D and Copeland E J 2000 Superstring cosmology Phys. Rep. 331 343–492
[20] Baranskii K N, Sever G A and Velichkina T S 1971 Propagation of transverse hypersonic waves in

low-viscosity liquids JETF Pis. Red. 13 52–54
[21] Berdyev A A and Lezhnev I B 1971 Transverse sound in liquids JETF Pis. Red. 13 49–51
[22] Hosokawa S et al 2009 Transverse acoustic excitations in Liquid Ga Phys. Rev. Lett. 102 105502
[23] Hehl F W and Obukhov Y N 2003 Foundations of Classical Electrodynamics (Boston:

Birkhauser)
[24] Moffatt H K 1969 The degree of knottedness of tangled vortex lines J. Fluid Mech. 35 117–29
[25] Moffatt H K and Tsinober A 1992 Helicity in laminar and turbulent flow Ann. Rev. Fluid Mech. 24

281–312
[26] Levich E and Tsinober A 1983 On the role of helical structures in three-dimensional turbulent flow

Phys. Lett. A 93 293–7
[27] Branover H, Eidelman A, Golbraikh E and Moiseev S 1999 Turbulence and Structures, Chaos,

Fluctuations, and Helical Self-Organization in Nature and the Laboratory (New York:
Academic Press)

[28] Scofield D F and Huq P 2010 Evolution of helicity in fluid flows J. Math. Phys. 51 033520
[29] Kiehn R M 2007 Non-equlibrium Thermodynamics (Morrisville, N.C.: Lulu Enterprises,)
[30] Ricca R L (ed) 2001 An introduction to the geometry and topology of fluid flows NATO ASI Series

II (Cambridge, UK) vol 47 (The Netherlands: Kluwer, Dordrect)
[31] Lectures on Topological fluid dynamics Ricca R L (ed) 2009 Springer CIME Lecture Notes on

Mathematics (Heidelberg: Springer-Verlag)
[32] Landau L D and Lifshitz E M 2004 The Classical Theory of Fields 4th ed (Amsterdam: Elsevier)
[33] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (San Francisco: W H Freeman)
[34] Montesinos M and Flores E 2006 Symmetric energy-momentum tensor in Maxwell, Yang-Mills,

and Proca theories obtained using only Noetherʼs theorem, Revista Mexicana de Fisica 52
29–36 (http://arxiv.org/abs/hep-th/0602190).

[35] Yudovich V I 2000 On the loss of smoothness of the solutions of the Euler equations and the
inherent instability of flows of an ideal fluid Chaos 10 705–15

[36] Tsinober A 2012 An Informal Introduction to Turbulence 2nd ed (Dordrecht: Kluwer)
[37] Scofield D F and Huq P 2009 Transverse waves and vortex fields in non-relativistic fluid flows

Phys. Lett. A 373 1155–8
[38] Flanders H 1989 Differential Forms with Applications to the Physical Sciences (New York, NY:

Dover)
[39] Berger S A, Talbot L and Yao L S 1983 Flow in curved tubes Ann. Rev. Fluid Mech. 15 461–512

Fluid Dyn. Res. 46 (2014) 055514 D F Scofield and P Huq

22

http://dx.doi.org/10.1007/BF01645505
http://dx.doi.org/10.1098/rspa.1977.0155
http://dx.doi.org/10.1098/rspa.1979.0005
http://dx.doi.org/10.1103/PhysRevD.31.725
http://dx.doi.org/10.1016/0003-4916(86)90164-8
http://dx.doi.org/10.1016/0003-4916(86)90164-8
http://dx.doi.org/10.1103/PhysRevA.41.1855
http://dx.doi.org/10.1006/aphy.1996.0036
http://dx.doi.org/10.1016/S0370-1573(00)00064-8
http://dx.doi.org/10.1103/PhysRevLett.102.105502
http://dx.doi.org/10.1017/S0022112069000991
http://dx.doi.org/10.1146/annurev.fl.24.010192.001433
http://dx.doi.org/10.1146/annurev.fl.24.010192.001433
http://dx.doi.org/10.1016/0375-9601(83)90792-2
http://dx.doi.org/10.1063/1.3329422
http://arxiv.org/abs/hep-th/0602190
http://dx.doi.org/10.1063/1.1287066
http://dx.doi.org/10.1016/j.physleta.2009.01.048
http://dx.doi.org/10.1146/annurev.fl.15.010183.002333

	1. Introduction
	2. Background
	2.1. Vortex Field Equations

	3. Deriving the fluid dynamical Lorentz force law and Poynting theorems
	3.1. Fluid dynamical Lorentz force law
	3.2. Fluid dynamical Poynting theorem

	4. Implications of the Lorentz force law and Poynting theorem
	4.1. Field equations reflecting new channels of stress-energy transport
	4.2. Balance of stress-energy in high speed limits
	4.3. Characterization of time-independent and time-dependent flows

	5. Summary and conclusions
	Acknowledgments
	Appendix A.
	Appendix B.
	References



